Gravitational Waves and Their Interaction with Electromagnetic Field

Author(s):  
Venzo Sabbata
2012 ◽  
Vol 90 (11) ◽  
pp. 1077-1130 ◽  
Author(s):  
David Alba ◽  
Luca Lusanna

In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tomoki Wada ◽  
Masaru Shibata ◽  
Kunihito Ioka

Abstract We analytically study the properties of the electromagnetic field in the vacuum around close binary compact stars containing at least one neutron star. We show that the orbital motion of the neutron star induces high multipole modes of the electromagnetic field just before the merger. These modes are superimposed to form a spiral arm configuration, and its edge is found to be a likely site for magnetic reconnection. These modes also enhance the total Poynting flux from neutron star binaries by a factor of 2–4. We also indicate that the electric field induced by the orbital motion leads to a magnetosphere around binaries and estimate its plasma density, which has a different parameter dependence than the Goldreich–Julian density. With these properties, we discuss possible electromagnetic counterparts to gravitational wave events, and identify radio precursors, such as fast radio bursts, as the most promising observational targets.


Colliding plane gravitational waves that lead to the development of a horizon and a subsequent time-like singularity are coupled with an electromagnetic field, a perfect fluid (whose energy density, ∊ , equals the pressure, p ), and null dust (consisting of massless particles). The coupling of the gravitational waves with an electromagnetic field does not affect, in any essential way, the development of the horizon or the time-like singularity if the polarizations of the colliding gravitational waves are not parallel. If the polarizations are parallel, the space-like singularity which occurs in the vacuum is transformed into a horizon followed by a three-dimensional time-like singularity by the merest presence of the electromagnetic field. The coupling of the gravitational waves with an ( ∊ = p )-fluid and null dust affect the development of horizons and singularities in radically different ways: the ( ∊ = p )-fluid affects the development decisively in all cases but qualitatively in the same way, while null dust prevents the development of horizons and allows only the development of space-like singularities. The contrasting behaviours of an ( ∊ = p )-fluid and of null dust in the framework of general relativity is compared with the behaviours one may expect, under similar circumstances, in the framework of special relativity.


1982 ◽  
Vol 5 (1) ◽  
pp. 133-139 ◽  
Author(s):  
G. P. Pokhariyal

In thi paper new curvature tensors have been defined on the lines of Weyl's projective curvature tensor and it has been shown that the “distribution” (order in which the vectors in question are arranged before being acted upon by the tensor in question) of vector field over the metric potentials and matter tensors plays an important role in shaping the various physical and geometrical properties of a tensor viz the formulation of gravitational waves, reduction of electromagnetic field to a purely electric field, vanishing of the contracted tensor in an Einstein Space and the cyclic property.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 852
Author(s):  
Charles Wang ◽  
Melania Mieczkowska

Zero-point fluctuations are a universal consequence of quantum theory. Vacuum fluctuations of electromagnetic field have provided crucial evidence and guidance for QED as a successful quantum field theory with a defining gauge symmetry through the Lamb shift, Casimir effect, and spontaneous emission. In an accelerated frame, the thermalisation of the zero-point electromagnetic field gives rise to the Unruh effect linked to the Hawking effect of a black hole via the equivalence principle. This principle is the basis of general covariance, the symmetry of general relativity as the classical theory of gravity. If quantum gravity exists, the quantum vacuum fluctuations of the gravitational field should also lead to the quantum decoherence and dissertation of general forms of energy and matter. Here we present a novel theoretical effect involving the spontaneous emission of soft gravitons by photons as they bend around a heavy mass and discuss its observational prospects. Our analytic and numerical investigations suggest that the gravitational bending of starlight predicted by classical general relativity should also be accompanied by the emission of gravitational waves. This in turn redshifts the light causing a loss of its energy somewhat analogous to the bremsstrahlung of electrons by a heavier charged particle. It is suggested that this new effect may be important for a combined astronomical source of intense gravity and high-frequency radiation such as X-ray binaries and that the proposed LISA mission may be potentially sensitive to the resulting sub-Hz stochastic gravitational waves.


2017 ◽  
Vol 9 (3) ◽  
pp. 21
Author(s):  
David Zareski

In previous publications, we showed that Maxwell’s equations are an approximation to those of General Relativity when V<<c, where V is the velocity of the particle submitted to the electromagnetic field. This was demonstrated by showing that the Lienard-Wiechert potential four-vector A_u created by an electric charge is the equivalent of the gravitational four-vector G_u created by a massive neutral point when V<<c. In the present paper, we generalize these results for V non-restricted to be small. To this purpose, we show first that the exact Lagrange-Einstein function of an electric charge q submitted to the field due an immobile charge q_0 is of the same form as that of a particle of mass m submitted to the field created by an immobile particle of mass m_0. Maxwell’s electrostatics is then generalized as a case of the Einstein’s general relativity. In particular, it appears that an immobile q_0 creates also an electromagnetic horizon that behaves like a Schwarzschild horizon. Then, there exist ether gravitational waves constituted by gravitons in the same way as the electromagnetic waves are constituted by photons. Now, since A_u and G_u, are equivalent, and as we show, G_u produces the approximation, for V<<c, of g_u4 created by m_0 mobile, where the g_uv  are the components of Einstein’s fundamental tensor, it follows that A_u+u_u produces the approximation, for V<<c, of Bet_u4 , where the Bet_uv created by m_0 and by q_0, generalize the g_uv.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012009
Author(s):  
V Pustovoit ◽  
V Gladyshev ◽  
V Kauts ◽  
A Morozov ◽  
P Nikolaev ◽  
...  

Abstract We consider the different approaches to the generation and detection of the high-frequency gravitational waves. The estimations of the amplitude of gravitational waves generated by these methods were made. The characteristics of the high-frequency gravitational waves induced by perturbations of matter and the electromagnetic field are compared. The possibility of the direct detection of gravitational waves on the basis of the different methods was considered as well.


2016 ◽  
Vol 7 (2) ◽  
pp. 75
Author(s):  
Angel Jose Chacon Velasco

AbstractBased on the 3+1 formalism for the formulation of an arbitrary reference frame and using the concept of electric and magnetic Weyl’s tensors, profound analogies between gravitational and electromagnetic field, its invariants, and specifically, among the energy-momentum field tensor in electromagnetic theory and Bel-Robinson’s (BR) or “super-energy” tensor in gravitation are established and discussed. In order to do that, original expressions for Weyl’s and BR’s tensors in terms of quasi-electric and quasi-magnetic fields were obtained. Furthermore, some theoretical consequences on the implications of the development of those analogies are outlined within the context of the yet to be directly proven experimental reality of gravitational waves.


Sign in / Sign up

Export Citation Format

Share Document