scholarly journals New Analogies Between Electromagnetic and Gravitational Fields Through the Bel-Robinson Tensor

2016 ◽  
Vol 7 (2) ◽  
pp. 75
Author(s):  
Angel Jose Chacon Velasco

AbstractBased on the 3+1 formalism for the formulation of an arbitrary reference frame and using the concept of electric and magnetic Weyl’s tensors, profound analogies between gravitational and electromagnetic field, its invariants, and specifically, among the energy-momentum field tensor in electromagnetic theory and Bel-Robinson’s (BR) or “super-energy” tensor in gravitation are established and discussed. In order to do that, original expressions for Weyl’s and BR’s tensors in terms of quasi-electric and quasi-magnetic fields were obtained. Furthermore, some theoretical consequences on the implications of the development of those analogies are outlined within the context of the yet to be directly proven experimental reality of gravitational waves.

2012 ◽  
Vol 90 (11) ◽  
pp. 1077-1130 ◽  
Author(s):  
David Alba ◽  
Luca Lusanna

In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.


2021 ◽  
pp. 29-33
Author(s):  

Variants of weld pools obtained by verification with the influence of magnetic fields are considered. Methods for increasing the effectiveness of electromagnetic effects during welding are proposed. Keywords: welding, electromagnetic field, weld pool, induction, coating. [email protected], [email protected]


2021 ◽  
Author(s):  
Vaibhav Kalvakota

The September 14, 2015 gravitational wave observations showed the inspiral of two black holes observed from Hanford and Livingston LIGO observatories. This detection was significant for two reasons: firstly, it coupled the result and avoided the possibility of a false alarm by 5σ , meaning that the detected “noise” was indeed from an astronomical source of gravitational waves. We will discuss the primary landscape of gravitational waves, their mathematical structure and how they can be used to predict the masses of the merger system. We will also discuss gravitational wave detector optimisations, and then we will consider the results from the detected merger GW150914. We will consider a straight-forward mathematical approach, and we will primarily be interested in the mathematical modelling of gravitational waves from General Relativity (Section 1). We will first consider a “perturbed” Minkowski metric, and then we will discuss the properties of the perturbation addition tensor. We will then discuss on the gravitational field tensor, and how it arises from the perturbation tensor. We will then talk about the gauge condition, essentially the gauge “freedom” , and then we will talk about the curvature tensor, leading eventually to the effect of gravitational waves on a ring of particles. We will consider the polarisation tensor, which maps the amplitude and polarisation details. The polarisation splits into plus polarised and cross polarised waves, which is technically the effect of a propagating gravitational wave through a ring of particles. We will then talk about the linearized Einstein Field Equations, and how the physical system of merger is encoded into the mathematical structural unity of the metric. We will then talk about the detection of these gravitational waves and how the detector can be optimised, or how the detector can be set so that any “noise” detected can fall in the error margins, and how the detector can prevent the interferometric “photon-noise” from being detected (Section 2.2). Then, we will discuss data results from the source GW150914 detection by LIGO (Section 3).


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
João Luís Rosa ◽  
Matheus A. Marques ◽  
Dionisio Bazeia ◽  
Francisco S. N. Lobo

AbstractBraneworld scenarios consider our observable universe as a brane embedded in a five-dimensional bulk. In this work, we consider thick braneworld systems in the recently proposed dynamically equivalent scalar–tensor representation of f(R, T) gravity, where R is the Ricci scalar and T the trace of the stress–energy tensor. In the general $$f\left( R,T\right) $$ f R , T case we consider two different models: a brane model without matter fields where the geometry is supported solely by the gravitational fields, and a second model where matter is described by a scalar field with a potential. The particular cases for which the function $$f\left( R,T\right) $$ f R , T is separable in the forms $$F\left( R\right) +T$$ F R + T and $$R+G\left( T\right) $$ R + G T , which give rise to scalar–tensor representations with a single auxiliary scalar field, are studied separately. The stability of the gravitational sector is investigated and the models are shown to be stable against small perturbations of the metric. Furthermore, we show that in the $$f\left( R,T\right) $$ f R , T model in the presence of an extra matter field, the shape of the graviton zero-mode develops internal structure under appropriate choices of the parameters of the model.


Author(s):  
Tony Yuan

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton’s gravitational equation through the influence of gravitational waves?


2006 ◽  
Vol 03 (03) ◽  
pp. 451-469 ◽  
Author(s):  
F. CANFORA ◽  
L. PARISI ◽  
G. VILASI

Exact solutions of Einstein field equations invariant for a non-Abelian bidimensional Lie algebra of Killing fields are described. Physical properties of these gravitational fields are studied, their wave character is checked by making use of covariant criteria and the observable effects of such waves are outlined. The possibility of detection of these waves with modern detectors, spherical resonant antennas in particular, is sketched.


Sign in / Sign up

Export Citation Format

Share Document