scholarly journals Measurement of Neutral Current Cross-Sections and their Energy- and y-Dependence

1979 ◽  
pp. 635-669
Author(s):  
H. P. Paar
1996 ◽  
Vol 379 (1-4) ◽  
pp. 319-329 ◽  
Author(s):  
S. Aid ◽  
V. Andreev ◽  
B. Andrieu ◽  
R.-D. Appuhn ◽  
M. Arpagaus ◽  
...  

2020 ◽  
Vol 16 ◽  
pp. 75
Author(s):  
P. C. Divari ◽  
T. S. Kosmas

Inelastic neutrino-nucleus scattering cross sections at low and intermediate energies are investigated for currently interesting nuclei employed in neutrino-detection experiments. This is an extension to charged current processes of our previous QRPA calculations referred to neutral current neutrino/antineutrino-nucleus reactions. Our preliminary results for the reactions 56Fe(νe, e−)56Co and 40Ar(νe, e−)40K compare rather well with similar calculations obtained in the context of continuum RPA.


2020 ◽  
Vol 15 ◽  
pp. 249
Author(s):  
V. Ch. Chasioti ◽  
T. S. Kosmas ◽  
P. Divari

Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino (or antineutrino). Contributions coming from both, the vector and axial-vector components of the corresponding hadronic currents have been included. The initial and final state nuclear wave-functions have been calculated in the context of the Quasi-particle Random Phase Approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum (up to about 5 MeV) of the studied nuclei. The results presented here refer to the nuclear isotopes 16O and 98Mo. As it is well known, O plays a significant role in supernova evolution phenomena and Mo is used as a target in the MOON neutrino experiment at Japan.


2021 ◽  
Author(s):  
Kadir Ocalan

Abstract This paper presents high-accuracy predictions for the differential cross sections as a function of the key observable φ*η of the neutral-current Drell-Yan (DY) dilepton production in proton-proton (pp) collisions. The differential distributions for the φ*η are presented by using the state-of-the-art predictions from the combined calculations of fixed-order perturbative QCD corrections at next-to-next-to-leading order (NNLO) accuracy and resummation of large logarithmic terms at next-to-next-to-leading logarithmic (NNLL) and next-to-NNLL (N3LL) accuracies, i.e., NNLO+NNLL and NNLO+N3LL, respectively. The predicted distributions are reported for a thorough set of the DY dilepton invariant mass mll ranges, spanning a wide kinematic region of 50 < mll< 1000 GeV both near and away from the Z-boson mass peak, and rapidity yll ranges in the central detector acceptance region of |yll| < 2.4. The differential φ*η distributions in the wide mll and yll ranges offer stringent tests to assess the reliability of the predictions, where the mll and yll are closely correlated with the parton distribution functions (PDFs) of the incoming partons. The merged predictions through NNLO+N3LL are observed to provide good description of the 13 TeV pp collision data for the φ*η (including the dilepton transverse momentum pll T as well) distributions in almost the entire mll and yll ranges, apart from the intermediate- to high-φ*η region in the lowest mass range 50–76 GeV which is assessed to constitute a challenge for the presented predictions. The merged predictions at NNLO+N3LL are also reported at 14 TeV for the upcoming high-luminosity running era of the LHC, in which increasing amount of data is expected to require more accurate and precise theoretical description. The most recent PDF models MSHT20 and CT18 are tested for the first time in addition to the NNPDF3.1 exploiting the merged φ*η predictions.


2019 ◽  
Vol 206 ◽  
pp. 01002
Author(s):  
Vladimir Chekelian

Measurements of jet cross sections in neutral current deep-inelastic scattering (NC DIS) using data taken with the H1 detector at HERA are accomplished by the precision measurement of double-differential inclusive jet, dijet and trijet cross sections at low photon virtualities 5.5 < Q2 < 80 GeV2, and by extending previous inclusive jet measurements in the range 150 < Q2 < 15000 GeV2 to low transverse jet momenta 5 < PT < 7 GeV. The strong coupling constant at the Z-boson mass, αs(mZ), is determined in next-to-next-to-leading order (NNLO) QCD using H1 inclusive jet and dijet cross section measurements. Complementary, αs(mZ) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with the QCD expectations.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Vaitsa Tsakstara

At first, we evaluate scattering cross sections of low, and intermediate-energy neutrinos scattered off the114Cd isotope, the most abundant Cd isotope present also in the COBRA detector (CdTe and CdZnTe materials) which aims to search for double beta decay events and neutrino observations at Gran Sasso laboratory (LNGS). The coherentν-nucleus channel addressed here is the dominant reaction channel of the neutral currentν-nucleus scattering. Ourν-nucleus cross sections (calculated with a refinement of the quasiparticle random-phase approximation, QRPA) refer to thegs→gstransitions forν-energiesεν≤100 MeV. Subsequently, simulatedν-signals on114Cd isotope are derived. Towards this purpose, the required folded cross section comes out of simulation techniques by employing several low, and intermediate-energy neutrino distributions of the astrophysicalν-sources, like the solar, supernova, and Earth neutrinos, as well as the laboratory neutrinos, the reactor neutrinos, the pion-muon stopped neutrinos, and theβ-beam neutrinos.


1989 ◽  
Vol 04 (07) ◽  
pp. 1781-1825 ◽  
Author(s):  
JÜRGEN G. KÖRNER ◽  
ERWIN MIRKES ◽  
GERHARD A. SCHULER

We present the complete O(αs) corrections to the electroweak cross sections of both neutral current and charged current deep inelastic e±p scattering including lepton polarization effects. Changes in the cross section due to the inclusion of next-to-leading-log (NLL) effects are parametrized by K factors, which are defined as the ratio of the NLL O(αs) cross sections and the Born cross section. Using the standard redefinition scheme of the parton densities, we find that the K factors deviate substantially from unity for small values of the Bjorken-Scaling variable x. We also elaborate on problems that arise when defining jet cross sections in ep scattering and present numerical results for the O(αs) 3-jet and 2-jet rates. We observe that the Q2-dependence of the 3-jet rate is dominated by the running strong coupling constant αs(Q2) allowing for its determination over a wide range in Q2 at high energy ep colliders.


Sign in / Sign up

Export Citation Format

Share Document