Seasonal Aspects of Transport of Organic and Inorganic Matter in Streams

Author(s):  
Kenneth W. Dance
Derrida Today ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 72-94
Author(s):  
Bernard Stiegler

These lectures outline the project of a general organology, which is to say an account of life when it is no longer just biological but technical, or when it involves not just organic matter but organized inorganic matter. This organology is also shown to require a modified Simondonian account of the shift from vital individuation to a three-stranded process of psychic, collective and technical individuation. Furthermore, such an approach involves extending the Derridean reading of Socrates's discussion of writing as a pharmakon, so that it becomes a more general account of the pharmacological character of retention and protention. By going back to Leroi-Gourhan, we can recognize that this also means pursuing the history of retentional modifications unfolding in the course of the history of what, with Lotka, can also be called exosomatization. It is thus a question of how exteriorization can, today, in an epoch when it becomes digital, and in an epoch that produces vast amounts of entropy at the thermodynamic, biological and noetic levels, still possibly produce new forms of interiorization, that is, new forms of thought, care and desire, amounting to so many chances to struggle against the planetary-scale pharmacological crisis with which we are currently afflicted.


2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Eleanor J. Vaughan ◽  
Shaun K. Wilson ◽  
Samantha J. Howlett ◽  
Valeriano Parravicini ◽  
Gareth J. Williams ◽  
...  

AbstractScleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (δ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal δ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in δ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals.


2012 ◽  
Vol 47 ◽  
pp. 250-255 ◽  
Author(s):  
LO Teodoro ◽  
AA Melo-Junior ◽  
KM Spercoski ◽  
RN Morais ◽  
FF Souza

2010 ◽  
Vol 7 (4) ◽  
pp. 1254-1257 ◽  
Author(s):  
K. H. Shivaprasad ◽  
M. M. Nagabhushana ◽  
C. Venkataiah

Ash, an inorganic matter present in coal is amenable for dissolution using suitable reagents. Thus the dissolution of ash and its subsequent removal reduces the release of many toxic elements into the environment by coal based industries. Removal of ash also enhances the calorific value. In the present investigation an attempt has been made to reduce the ash content of raw coal obtained from nearest thermal power by using hydrochloric acid, sulfuric acid and sodium hydroxide. A series of leaching experiments were conducted on coal of different size fractions by varying the parameters like concentration, temperature and time of leaching. The results indicate that it is possible to remove nearly 75% of ash from coal sample by leaching.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 421-428 ◽  
Author(s):  
T. Kakimolo ◽  
Y. Imai ◽  
N. Funamizu ◽  
T. Takakuwa ◽  
M. Kunimoto

Bio-Toilet is the name of a dry closet or composting toilet using sawdust as an artificial soil matrix for bioconversion of human excrement into compost. Since feces and urine contain several chemicals such as pharmaceutical residues and endocrine disruptors and they may still remain in compost after biological reaction in the Bio-Toilet, it is required to examine the possibility of soil and/or groundwater pollution by applying compost to a soil system in farmland. In this study, toxicity of Bio-Toilet compost was evaluated by measuring the viability of human neuroblast (NB-1). The bio-assay was applied to the water extract of compost from the Bio-Toilets which are in practical use in Japan. The assay results showed that (1) the extract of feces showed no toxicity, and the extracts of unused sawdust had no or low level toxicity and (2) the extracts of composts had heavier toxicity than unused sawdust. These results implied that some chemicals that have toxicity were generated by biological reactions or accumulated in toilet system. The bio-assay results with fractionated organic matter by its molecular weight showed that the small molecular weight fraction had stronger toxicity than other fractions. The effect of inorganic matter on toxicity was examined by comparing the dose-response relationship of the extracts of compost with positive control with 1M of sodium chloride solution. The comparison showed that sodium concentration in the extract was too low to develop the toxicity and the effect of inorganic matter could be neglected in this study.


Sign in / Sign up

Export Citation Format

Share Document