DNA Virus (SV40) Induced Antigens

Author(s):  
Satvir S. Tevethia ◽  
Mary J. Tevethia
Keyword(s):  
PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79683 ◽  
Author(s):  
Manola Comar ◽  
Daniela De Rocco ◽  
Enrico Cappelli ◽  
Nunzia Zanotta ◽  
Roberta Bottega ◽  
...  

2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Hongjuan You ◽  
Yingying Lin ◽  
Feng Lin ◽  
Mingyue Yang ◽  
Jiahui Li ◽  
...  

ABSTRACT The cGAS/STING-mediated DNA-sensing signaling pathway is crucial for interferon (IFN) production and host antiviral responses. Herpes simplex virus I (HSV-1) is a DNA virus that has evolved multiple strategies to evade host immune responses. Here, we demonstrate that the highly conserved β-catenin protein in the Wnt signaling pathway is an important factor to enhance the transcription of type I interferon (IFN-I) in the cGAS/STING signaling pathway, and the production of IFN-I mediated by β-catenin was antagonized by HSV-1 US3 protein via its kinase activity. Infection by US3-deficienct HSV-1 and its kinase-dead variants failed to downregulate IFN-I and IFN-stimulated gene (ISG) production induced by β-catenin. Consistent with this, absence of β-catenin enhanced the replication of US3-deficienct HSV-1, but not wild-type HSV-1. The underlying mechanism was the interaction of US3 with β-catenin and its hyperphosphorylation of β-catenin at Thr556 to block its nuclear translocation. For the first time, HSV-1 US3 has been shown to inhibit IFN-I production through hyperphosphorylation of β-catenin and to subvert host antiviral innate immunity. IMPORTANCE Although increasing evidence has demonstrated that HSV-1 subverts host immune responses and establishes lifelong latent infection, the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity, especially the cGAS/STING-mediated cellular DNA-sensing signaling pathway, have not been fully explored. Here, we show that β-catenin promotes cGAS/STING-mediated activation of the IFN pathway, which is important for cellular innate immune responses and intrinsic resistance to DNA virus infection. The protein kinase US3 antagonizes the production of IFN by targeting β-catenin via its kinase activity. The findings in this study reveal a novel mechanism for HSV-1 to evade host antiviral immunity and add new knowledge to help in understanding the interaction between the host and HSV-1 infection.


2000 ◽  
Vol 74 (11) ◽  
pp. 5161-5167 ◽  
Author(s):  
Hiroaki Okamoto ◽  
Masato Ukita ◽  
Tsutomu Nishizawa ◽  
Junichi Kishimoto ◽  
Yuji Hoshi ◽  
...  

ABSTRACT TT virus (TTV) is an unenveloped, circular, and single-stranded DNA virus commonly infecting human beings worldwide. TTV DNAs in paired serum and liver tissues from three viremic individuals were separated by gel electrophoresis and characterized biophysically. TTV DNAs in sera migrated in sizes ranging from 2.0 to 2.5 kb. TTV DNAs in liver tissues, however, migrated at 2.0 to 2.5 kb as well as at 3.5 to 6.1 kb. Both faster- and slower-migrating forms of TTV DNAs in the liver were found to be circular and of the full genomic length of 3.8 kb. TTV DNAs migrating at 2.0 to 2.5 kb, from either serum or liver tissues, were sensitive to S1 nuclease but resistant to restriction endonucleases, and therefore, they were single-stranded. By contrast, TTV DNAs in liver tissues that migrated at 3.5 to 6.1 kb were resistant to S1 nuclease. They migrated at 3.7 to 4.0 kb after digestion with EcoRI, which suggests that they represent circular, double-stranded replicative intermediates of TTV. When TTV DNAs were subjected to strand-specific primer extension and then amplified by PCR with internal primers, those in serum were found to be minus-stranded DNAs while those in liver tissues were found to be a mixture of plus- and minus-stranded DNAs. These results suggest that TTV replicates in the liver via a circular double-stranded DNA.


2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Germán Andrés

ABSTRACT African swine fever virus (ASFV) is a large, multienveloped DNA virus composed of a genome-containing core successively wrapped by an inner lipid envelope, an icosahedral protein capsid, and an outer lipid envelope. In keeping with this structural complexity, recent studies have revealed an intricate entry program. This Gem highlights how ASFV uses two alternative pathways, macropinocytosis and clathrin-mediated endocytosis, to enter into the host macrophage and how the endocytosed particles undergo a stepwise, low pH-driven disassembly leading to inner envelope fusion and core delivery in the cytoplasm.


1967 ◽  
Vol 13 (5) ◽  
pp. 543-549 ◽  
Author(s):  
R. Dubreuil ◽  
E. di Franco ◽  
V. Pavilanis ◽  
P. Marois

The inoculation of SV40 virus during the few days following the transplantation of SV40-transformed cells to adult hamsters inhibits the development of the transplanted tumors. The number and the size of the tumors are markedly reduced relative to those developing in control animals inoculated with medium 199.The animals that were resistant to the first transplantation, and those where the tumors were excised, showed an increased resistance to a second transplantation effected after an interval of 8 months.These results are interpreted as supporting the view that the transplantation of virus-transformed cells, and the development of the transplanted tumor, induce complex immunological reactions. The homologous oncogenic virus can be used to modify favorably the balance between cellular and humoral immune reactions conducive to the development of the tumor.


1967 ◽  
Vol 58 (1) ◽  
pp. 127-133 ◽  
Author(s):  
H. Koprowski ◽  
F. C. Jensen ◽  
Z. Steplewski
Keyword(s):  

2014 ◽  
Vol 89 (4) ◽  
pp. 2287-2300 ◽  
Author(s):  
Yinghui Liu ◽  
Jianhua Li ◽  
Jieliang Chen ◽  
Yaming Li ◽  
Weixia Wang ◽  
...  

ABSTRACTThe cellular innate immune system recognizing pathogen infection is essential for host defense against viruses. In parallel, viruses have developed a variety of strategies to evade the innate immunity. The hepatitis B virus (HBV), a DNA virus that causes chronic hepatitis, has been shown to inhibit RNA helicase RIG-I-mediated interferon (IFN) induction. However, it is still unknown whether HBV could affect the host DNA-sensing pathways. Here we report that in transiently HBV-transfected Huh7 cells, the stably HBV-producing cell line HepAD38, and HBV-infected HepaRG cells and primary human hepatocytes, HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the stimulator of interferon genes (STING), which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. Screening analysis demonstrated that the viral polymerase (Pol), but not other HBV-encoded proteins, was able to inhibit STING-stimulated interferon regulatory factor 3 (IRF3) activation and IFN-β induction. Moreover, the reverse transcriptase (RT) and the RNase H (RH) domains of Pol were identified to be responsible for the inhibitory effects. Furthermore, Pol was shown to physically associate with STING and dramatically decrease the K63-linked polyubiquitination of STING via its RT domain without altering the expression level of STING. Taken together, these observations suggest that besides its inherent catalytic function, Pol has a role in suppression of IFN-β production by direct interaction with STING and subsequent disruption of its K63-linked ubiquitination, providing a new mechanism for HBV to counteract the innate DNA-sensing pathways.IMPORTANCEAlthough whether and how HBV infection induces the innate immune responses are still controversial, it has become increasingly clear that HBV has developed strategies to counteract the pattern recognition receptor-mediated signaling pathways. Previous studies have shown that type I IFN induction activated by the host RNA sensors could be inhibited by HBV. However, it remains unknown whether HBV as a DNA virus utilizes evasion mechanisms against foreign DNA-elicited antiviral signaling. In recent years, the cytosolic DNA sensor and key adaptor STING has been demonstrated to be essential in multiple foreign DNA-elicited innate immune signalings. Here, for the first time, we report STING as a new target of HBV to antagonize IFN induction and identify the viral polymerase responsible for the inhibitory effect, thus providing an additional molecular mechanism by which HBV evades the innate immunity; this implies that in addition to its inherent catalytic function, HBV polymerase is a multifunctional immunomodulatory protein.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Suresh Banjara ◽  
Sofia Caria ◽  
Linda K. Dixon ◽  
Mark G. Hinds ◽  
Marc Kvansakul

ABSTRACT Programmed cell death is a tightly controlled process critical for the removal of damaged or infected cells. Pro- and antiapoptotic proteins of the Bcl-2 family are pivotal mediators of this process. African swine fever virus (ASFV) is a large DNA virus, the only member of the Asfarviridae family, and harbors A179L, a putative Bcl-2 like protein. A179L has been shown to bind to several proapoptotic Bcl-2 proteins; however, the hierarchy of binding and the structural basis for apoptosis inhibition are currently not understood. We systematically evaluated the ability of A179L to bind proapoptotic Bcl-2 family members and show that A179L is the first antiapoptotic Bcl-2 protein to bind to all major death-inducing mammalian Bcl-2 proteins. We then defined the structural basis for apoptosis inhibition of A179L by determining the crystal structures of A179L bound to both Bid and Bax BH3 motifs. Our findings provide a mechanistic understanding for the potent antiapoptotic activity of A179L by identifying it as the first panprodeath Bcl-2 binder and serve as a platform for more-detailed investigations into the role of A179L during ASFV infection. IMPORTANCE Numerous viruses have acquired strategies to subvert apoptosis by encoding proteins capable of sequestering proapoptotic host proteins. African swine fever virus (ASFV), a large DNA virus and the only member of the Asfarviridae family, encodes the protein A179L, which functions to prevent apoptosis. We show that A179L is unusual among antiapoptotic Bcl-2 proteins in being able to physically bind to all core death-inducing mammalian Bcl-2 proteins. Currently, little is known regarding the molecular interactions between A179L and the proapoptotic Bcl-2 members. Using the crystal structures of A179L bound to two of the identified proapoptotic Bcl-2 proteins, Bid and Bax, we now provide a three-dimensional (3D) view of how A179L sequesters host proapoptotic proteins, which is crucial for subverting premature host cell apoptosis.


2011 ◽  
Vol 287 (5) ◽  
pp. 3009-3018 ◽  
Author(s):  
Francesco Piacente ◽  
Margherita Marin ◽  
Antonio Molinaro ◽  
Cristina De Castro ◽  
Virginie Seltzer ◽  
...  
Keyword(s):  

Vaccines ◽  
2014 ◽  
Vol 2 (3) ◽  
pp. 642-653 ◽  
Author(s):  
Kathleen Hefferon

Sign in / Sign up

Export Citation Format

Share Document