The Rate-Dependent Fracture Behavior of High Performance Sulfone Polymers

Rheology ◽  
1980 ◽  
pp. 349-354 ◽  
Author(s):  
R. Y. Ting ◽  
R. L. Cottington
2021 ◽  
Vol 156 ◽  
pp. 103785
Author(s):  
Zhenhua Xiao ◽  
Yong Liu ◽  
Junsheng Yang ◽  
Han Jiang ◽  
Liqun Tang ◽  
...  

2018 ◽  
Vol 171 ◽  
pp. 901-912 ◽  
Author(s):  
Tri Thuong Ngo ◽  
Dong Joo Kim ◽  
Jae Heum Moon ◽  
Sung Wook Kim

Author(s):  
Vikas Tomar

Trabecular bone fracture is closely related to the trabecular architecture and microdamage accumulation. Micro-finite element models have been used to investigate the elastic and yield properties of trabecular bone but have only seen limited application in modeling the microstructure dependent fracture of trabecular bone, [1, 2]. In the presented research a cohesive finite element method (CFEM) based approach that can be used to model microstructure and loading rate dependent fracture in trabecular bone is developed for the first time. The emphasis is on understanding the effect of the rate of loading and its correlation with the bone microstructure on the microdamage accumulation and fracture behavior in the trabecular bone. Analyses focus on understanding the effect of the rate of loading, change in bone tissue properties with aging, and their correlation with the bone microstructure on the microdamage accumulation and the fracture behavior in the trabecular bone.


2012 ◽  
Vol 504-506 ◽  
pp. 361-366
Author(s):  
Mario Rosso ◽  
Ildiko Peter

This paper presents an analysis of an advanced squeeze casting process suitable for the manufacturing of high performance industrial components more quickly and cheaply. After a short description of the process, some produced components are considered. The components, in A380 alloys, have been T6 heat treated and their soundness has been certified by non destructive tests. All considered components have been designed for advanced application in the automotive field, in particular for quite important sport cars. Standard samples for tensile and impact tests have been machined directly from the previous components. After the execution of the tests the fracture surface of samples has been observed by SEM in order to analyze details and to evaluate the influence of the process and of the alloy on the fracture behavior. On polished transverse sections of samples the microstructure of the alloy has been observed, highlighting a mainly globular shaped microstructure as expression of the attained semi-solid conditions during the processes. A critical analysis has been developed to evaluate the real potential and to present some criticism of the process.


2012 ◽  
Vol 65 (6) ◽  
pp. 1137-1141 ◽  
Author(s):  
C. Palada ◽  
P. Schouten ◽  
C. Lemckert

Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH3(CH2)16CH2OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s−1 the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.


2014 ◽  
Vol 566 ◽  
pp. 286-291
Author(s):  
Zoltan Major ◽  
Martin Reiter

The fracture behavior of engineering polymers is usually characterized at high loading rates using Charpy specimens. However, due to the presence of dynamic effects the conventional force based analysis for determining fracture toughness values is applicable only up to 1 m/s using tree point bending test configurations. This difficulty can be overcome in principle, by applying dynamic analysis methods (e.g. dynamic key curve (DKC) analysis) or by applying tensile loading fracture configurations. The applicability of pre-cracked Charpy specimens for determining fracture toughness values for polymeric materials over a wide loading rate range is investigated in this study.


2013 ◽  
Vol 544 ◽  
pp. 43-47 ◽  
Author(s):  
Ming Wei Chen ◽  
Hai Peng Qiu ◽  
Jian Jiao ◽  
Xiu Qian Li ◽  
Yu Wang ◽  
...  

SiC fiber reinforced SiC matrix (SiCf-SiC) composites with and without pyrolytic carbon interphase were prepared by polymer impregnation pyrolysis (PIP) progress. The effect of pyrolytic carbon interphase on the fracture behavior and mechanical properties of SiCf/SiC composites was studied. The results show that pyrolytic carbon interphase weakened the bonding between the matrix and the fibers. The mechanical properties of SiCf-SiC composites with carbon coating were improved effectively via fiber debonding and pulling-out from matrix under external loads. The flexural strength and fracture toughness of the above composites reached up to 498.52MPa and 24.09MPa•m1/2, respectively.


Sign in / Sign up

Export Citation Format

Share Document