microdamage accumulation
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3366
Author(s):  
Georgina C. A. Johnston ◽  
Benjamin J. Ahern ◽  
Chiara Palmieri ◽  
Alex C. Young

(1) Background: Parasagittal groove (PSG) changes are often present on advanced imaging of racing Thoroughbred fetlocks and have been suggested to indicate increased fracture risk. Currently, there is limited evidence differentiating the imaging appearance of prodromal changes in horses at risk of fracture from horses with normal adaptive modelling in response to galloping. This study aims to investigate imaging and gross PSG findings in racing Thoroughbreds and the comparative utility of different imaging modalities to detect PSG changes. (2) Methods: Cadaver limbs were collected from twenty deceased racing/training Thoroughbreds. All fetlocks of each horse were examined with radiography, low-field magnetic resonance imaging (MRI), computed tomography (CT), contrast arthrography and gross pathology. (3) Results: Horses with fetlock fracture were more likely to have lateromedial PSG sclerosis asymmetry and/or lateral PSG lysis. PSG lysis was not readily detected using MRI. PSG subchondral bone defects were difficult to differentiate from cartilage defects on MRI and were not associated with fractures. The clinical relevance of PSG STIR hyperintensity remains unclear. Overall, radiography was poor for detecting PSG changes. (4) Conclusions: Some PSG changes in Thoroughbred racehorses are common; however, certain findings are more prevalent in horses with fractures, possibly indicating microdamage accumulation. Bilateral advanced imaging is recommended in racehorses with suspected fetlock pathology.


2021 ◽  
Vol 87 (11) ◽  
pp. 43-54
Author(s):  
M. V. Zernin ◽  
A. V. Matyuhin ◽  
N. N. Rybkin

Fatigue damage to babbitt layers of plain bearings is often manifested during operation. The goal of the study is to develop a model for accumulation of the fatigue damage and destruction of antifriction materials and layers of plain bearings. A generalized fatigue diagram of tin-based babbitts including the main stages of fatigue damage and a diagram of the fatigue damage development in the antifriction layer of plain bearings are presented. The generalized model of V. V. Bolotin for damage accumulation and destruction is modified with regard to antifriction materials containing rather large structural elements. An explicit (direct) modeling of damage processes appeared possible for such materials. The model describes dissipated accumulation of microcracks (interpreted as destruction of the elements of the material structure), initiation and development of a system of short cracks, initiation and development of macro-cracks up to the limit state of the object. The model suggests discretization of the volume into sections with constant levels of complex stress state and discretization of the time axis into the intervals (blocks of loading cycles). The problem of identifying the parameters of a multistage model of the fatigue damage accumulation in the alloy is solved proceeding from the analysis of the results of testing babbitt specimens. We used the simplest optimization procedure, i.e., the method of deformable polyhedron. The parameters of the power function in the dependence of the rate of microdamage accumulation on the level of stresses are obtained. The parameters of the initiation and development of the crack system in the babbitt layer are obtained from the analysis of experimental results of studying steel-babbitt samples. The problem of calculating the durability of antifriction babbitt layers required the development of a new software. The program is examined by comparing calculated and experimental values of the durability of fatigue-tested bearing specimens forced against a rotating shaft by varying cyclic load. The calculated values of the durability match the experimental which confirms the performance of the calculated model.


2021 ◽  
Vol 410 ◽  
pp. 649-655
Author(s):  
Egor V. Leshkov ◽  
Sergey B. Sapozhnikov ◽  
Oleg A. Kudryavtsev

The development of weight-efficient reusable launch systems has increased the urgency of problems associated with ultra-low-cycle fatigue. In this paper, one-sided three-point bending cyclic tests of GFRP specimens were performed. Parallel to the cyclic tests, registration of acoustic emission signals has been performed to identify the main damage mechanisms underlying ultra-low-cycle fatigue of fabric-reinforced composites. The obtained displacement-time diagrams showed a noticeable effect of creep on the deformation process. It was found that fiber fracture is the main mechanism of microdamage accumulation. A phenomenological three-element model based on the Norton-Bailey law and the Masing structural model was proposed. The model allowed describing both the deformation process of the specimens in time and their durability at different load levels. An optimization algorithm based on the deformable polyhedron method was used to find the optimal set of the model parameters.


2021 ◽  
Author(s):  
Chenxi Yan ◽  
Stuart Warden ◽  
Mariana E Kersh

The tibia is a common site for stress fractures, which are believed to develop from microdamage accumulation to repetitive sub-yield strains. There is a need to understand how the tibia is loaded in vivo to understand how stress fractures develop and design exercises to build a more robust bone. Here, we use subject-specific, muscle-driven, finite element simulations of 11 basketball players to calculate strain and strain rate distributions at the midshaft and distal tibia during six activities: walking, sprinting, lateral cut, jumping after landing, changing direction from forward-to-backward sprinting, and changing direction while side shuffling. Maximum compressive strains were at least double maximum tensile microstrains (mu) during the stance phase of all activities. Sprinting and lateral cut had the highest compressive (-2773 +/- 934 mu and -2266 +/- 815 mu, respectively) and tensile (999 +/- 381 mu and 907 +/- 261 mu, respectively) strains. These activities also had the highest strains rates (peak compressive strain rate = 46237 +/- 38217 mu/s and 41510 +/- 17245 mu/s, respectively). Compressive strains principally occurred in the posterior tibia for all activities; however, tensile strain location varied. In particular, activities involving a change in direction increased tensile loads in the anterior tibia. These observations may guide preventative and management strategies for tibial stress fractures. In terms of prevention, the strain distributions suggest individuals should perform activities involving changes in direction during growth to adapt different parts of the tibia and develop a more fatigue resistant bone. In terms of management, the greater strain and strain rates during sprinting than jumping suggests jumping activities may be commenced earlier than full pace running. The greater anterior tensile strains during changes in direction suggest introduction of these types of activities should be delayed during recovery from an anterior tibial stress fractures, which have a high-risk of healing complications.


2021 ◽  
Author(s):  
Chenxi Yan ◽  
Stuart Warden ◽  
Mariana E Kersh

The tibia is a common site for stress fractures, which are believed to develop from microdamage accumulation to repetitive sub-yield strains. There is a need to understand how the tibia is loaded in vivo to understand how stress fractures develop and design exercises to build a more robust bone. Here, we use subject-specific, muscle-driven, finite element simulations of 11 basketball players to calculate strain and strain rate distributions at the midshaft and distal tibia during six activities: walking, sprinting, lateral cut, jumping after landing, changing direction from forward-to-backward sprinting, and changing direction while side shuffling. Maximum compressive strains were at least double maximum tensile microstrains (mu) during the stance phase of all activities. Sprinting and lateral cut had the highest compressive (-2773 +/- 934 mu) and -2266 +/-815 mu, respectively) and tensile (999 +/- 381 mu and 907 +/- 261 mu, respectively) strains. These activities also had the highest strains rates (peak compressive strain rate = 46237 +/- 38217 mu/s and 41510 +/- 17245 mu/s, respectively). Compressive strains principally occurred in the posterior tibia for all activities; however, tensile strain location varied. In particular, activities involving a change in direction increased tensile loads in the anterior tibia. These observations may guide preventative and management strategies for tibial stress fractures. In terms of prevention, the strain distributions suggest individuals should perform activities involving changes in direction during growth to adapt different parts of the tibia and develop a more fatigue resistant bone. In terms of management, the greater strain and strain rates during sprinting than jumping suggests jumping activities may be commenced earlier than full pace running. The greater anterior tensile strains during changes in direction suggest introduction of these types of activities should be delayed during recovery from an anterior tibial stress fractures, which have a high-risk of healing complications.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yo Watanabe ◽  
Naoki Kondo ◽  
Tomomi Fukuhara ◽  
Norio Imai ◽  
Masahiko Yamada ◽  
...  

Atypical femoral fracture is a low-energy stress fracture in the subtrochanteric region or the femoral shaft and is a complication of the long-term use of bisphosphonates. Histopathological findings of atypical femoral fractures have not been clarified. Herein, we report the case of a 61-year-old woman who fell while walking, which prompted her to visit our facility. She had a 7-year history of alendronate use to treat osteoporosis. A radiograph showed an atypical subtrochanteric femoral fracture, following which she underwent a primary surgery, where an intramedullary femoral nail was used. Implant breakage was discovered 8 weeks after the primary surgery. The patient underwent a revision surgery in which the entry point for the revised intramedullary hole was created to prevent varus position. The lag screw was successfully inserted into the center of the femoral head. Cancellous bone, isolated from the right ilium, was autogenously implanted into the fracture site. Fracture healing was promoted using low-intensity pulse ultrasonography. Callus formation was detected on a radiograph, and full weight-bearing was advised 12 weeks after the revision surgery. The fracture had healed completely at 13 months after the revision surgery. The patient was able to walk without support and could independently perform activities of daily life. Laboratory findings suggested that the concentrations of her bone formation markers were normal, while those of bone resorption markers were elevated. Iliac bone histomorphometry did not reveal severely suppressed bone turnover. In the cortex of fracture site, the lacunar density was markedly lower than the osteocyte density, and microcracks were detected, suggesting impaired osteocyte function and a low potential for fracture healing. This case is notable because it helps to clarify the histopathological findings of atypical femoral fractures.


2020 ◽  
Author(s):  
I. O. Sinev ◽  
E. N. Beletsky ◽  
M. R. Tyutin ◽  
L. R. Botvina ◽  
O. V. Rybalchenko ◽  
...  

2019 ◽  
Vol 34 (2) ◽  
pp. 2579-2594 ◽  
Author(s):  
Xiyu Liu ◽  
Wei Li ◽  
Jing Cai ◽  
Zedong Yan ◽  
Xi Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document