Population Crosses and the Genetic Structure of Milkweed Bug Life Histories

Author(s):  
Hugh Dingle ◽  
William S. Blau ◽  
Carl Kice Brown ◽  
Joseph P. Hegmann
2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


2000 ◽  
Vol 57 (5) ◽  
pp. 915-927 ◽  
Author(s):  
Michael A Banks ◽  
Vanessa K Rashbrook ◽  
Marco J Calavetta ◽  
Cheryl A Dean ◽  
Dennis Hedgecock

We use 10 microsatellite DNA markers to assess genetic diversity within and among the four runs (winter, spring, fall, and late fall) of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Forty-one population samples are studied, comprising naturally spawning and hatchery stocks collected from 1991 through 1997. Maximum likelihood methods are used to correct for kinship in juvenile samples and run admixture in adult samples. Through simulation, we determine the relationship between sample size and number of alleles observed at polymorphic microsatellite markers. Most samples have random-mating equilibrium proportions of single and multilocus genotypes. Temporal and spatial genetic heterogeneity is minimal among samples within subpopulations. An FST of 0.082 among subpopulations, however, indicates substantial divergence among runs. Thus, with the exception of our discovery of two distinct lineages of spring run, genetic structure accords with the diverse chinook life histories seen in the Central Valley and provides a means for discrimination of protected populations.


2021 ◽  
Author(s):  
Ernesto Azzurro ◽  
Mathilde Nourigat ◽  
Francesca Cohn ◽  
Jamila Ben Souissi ◽  
Giacomo Bernardi

Abstract Lessepsian fishes, entering the Mediterranean through the Suez Canal, have showed so far little genetic structure, but notable exceptions suggest the importance of life-history factors that may influence their patterns of spatial genetic variation. In this study, by sampling two invasive fishes with different life histories (the rabbitfish Siganus rivulatus and the filefish Stephanolepis diaspros ), we looked at evidence of population structure and selection at the boundary between the Red Sea and the Mediterranean (the Suez Canal), using thousands of molecular markers. Results illustrate two divergent patterns of genetic patterns, with little genetic structure in S. rivulatus and strong population structure in S. diaspros, even at such small spatial scale. We discuss differences in ecological characteristics between the two species to account for such differences. In addition, we report that in the face of both high ( S. rivulatus ) and low ( S. diaspros ) gene flow, loci under selection were uncovered, and some protein coding genes were identified as being involved with osmoregulation, which seems to be an important feature of individuals crossing the salinity-variable Suez Canal. The presence of genes under selection in populations near the Suez Canal supports the idea that selection may be active and essential for successful invasions right out of the gate.


2019 ◽  
Vol 129 (2) ◽  
pp. 315-322
Author(s):  
Steve Jordan ◽  
Brian K Hand ◽  
Scott Hotaling ◽  
Amanda G Delvecchia ◽  
Rachel Malison ◽  
...  

Abstract Little is known about the life histories, genetic structure and population connectivity of shallow groundwater organisms. We used next-generation sequencing (RAD-seq) to analyse population genomic structure in two aquifer species: Paraperla frontalis (Banks, 1902), a stonefly with groundwater larvae and aerial (winged) adults; and Stygobromus sp., a groundwater-obligate amphipod. We found similar genetic differentiation in each species between floodplains separated by ~70 river km in the Flathead River basin of north-west Montana, USA. Given that Stygobromus lacks the above-ground life stage of P. frontalis, our findings suggest that connectivity and the magnitude of genetic structure cannot be definitively assumed from life history differences.


Sign in / Sign up

Export Citation Format

Share Document