Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley

2000 ◽  
Vol 57 (5) ◽  
pp. 915-927 ◽  
Author(s):  
Michael A Banks ◽  
Vanessa K Rashbrook ◽  
Marco J Calavetta ◽  
Cheryl A Dean ◽  
Dennis Hedgecock

We use 10 microsatellite DNA markers to assess genetic diversity within and among the four runs (winter, spring, fall, and late fall) of chinook salmon (Oncorhynchus tshawytscha) in California's Central Valley. Forty-one population samples are studied, comprising naturally spawning and hatchery stocks collected from 1991 through 1997. Maximum likelihood methods are used to correct for kinship in juvenile samples and run admixture in adult samples. Through simulation, we determine the relationship between sample size and number of alleles observed at polymorphic microsatellite markers. Most samples have random-mating equilibrium proportions of single and multilocus genotypes. Temporal and spatial genetic heterogeneity is minimal among samples within subpopulations. An FST of 0.082 among subpopulations, however, indicates substantial divergence among runs. Thus, with the exception of our discovery of two distinct lineages of spring run, genetic structure accords with the diverse chinook life histories seen in the Central Valley and provides a means for discrimination of protected populations.

2010 ◽  
Vol 67 (10) ◽  
pp. 1549-1565 ◽  
Author(s):  
R. Bruce MacFarlane

The greatest rates of energy accumulation and growth in subyearling Chinook salmon ( Oncorhynchus tshawytscha ) occurred during the first month following ocean entry, supporting the importance of this critical period. Data from an 11-year study in the coastal ocean off California and the San Francisco Estuary revealed that juvenile salmon gained 3.2 kJ·day–1 and 0.8 g·day–1, representing 4.3%·day–1 and 5.2% day–1, respectively, relative to estuary exit values. Little gain in energy (0.28 kJ·day–1) or size (0.07 g·day–1) occurred in the estuary, indicating that the nursery function typically ascribed to estuaries can be deferred to initial ocean residence. Calculated northern anchovies ( Engraulis mordax ) equivalents to meet energy gains were one anchovy per day in the estuary (8% body weight·day–1) and about three per day immediately following ocean entry (15% body weight·day–1). Energy content in the estuary was positively related to higher salinity and lower freshwater outflow, whereas in the ocean, cooler temperatures, lower sea level, and greater upwelling resulted in greater gains. These results suggest that greater freshwater flows, warmer sea temperatures, and reduced or delayed upwelling, all of which are indicated by some (but not all) climate models, will likely decrease growth of juvenile Chinook salmon, leading to reduced survival.


2014 ◽  
Vol 71 (8) ◽  
pp. 1209-1219 ◽  
Author(s):  
Timothy D. Mussen ◽  
Oliver Patton ◽  
Dennis Cocherell ◽  
Ali Ercan ◽  
Hossein Bandeh ◽  
...  

Entrainment through water-diversion structures is a major passage challenge for fishes in watersheds worldwide. Behavioral guidance devices may be effective in passing fish by diversion inlets, thereby decreasing entrainment without reducing water-diversion rates, but data on their effectiveness is limited. In California’s central valley, out-migrating Chinook salmon (Oncorhynchus tshawytscha) are a species at risk for entrainment through unscreened, small-scale water-diversion pipes. Therefore, we tested entrainment susceptibility and behavior of juvenile Chinook salmon in a large-river-simulation flume at a “river” velocity of 0.15 m·s–1 with a 0.46 m diameter pipe diverting water at 0.57 m3·s–1, during the day and night. Compared with control conditions (no fish deterrent devices present), mean fish entrainment increased by 61% (day) and 43% (night) when underwater strobe lights were active, decreased by 30% when using a metal vibrating (12 Hz) ring during the night, and was unaffected by velocity cap attachments. Fish entrainments started at water velocities of 0.8 m·s–1 and decreased by 54% from spring to summer, possibly resulting from decreased pipe-passage frequency and smaller fish-school sizes. Our findings suggest that substantial entrainment can occur if fish repeatedly pass within 1.5 m of active unscreened diversions, with an estimated 50% of fish lost after encountering 18 pipes in spring and 50 pipes in summer.


2014 ◽  
Vol 71 (7) ◽  
pp. 1671-1682 ◽  
Author(s):  
D. Patrick Kilduff ◽  
Louis W. Botsford ◽  
Steven L. H. Teo

Abstract Knowledge of the spatial and temporal extent of covariation in survival during the critical ocean entry stage will improve our understanding of how changing ocean conditions influence salmon productivity and management. We used data from the Pacific coastwide coded-wire tagging program to investigate local and regional patterns of ocean survival of Chinook salmon (Oncorhynchus tshawytscha) from the Central Valley of California to southeastern Alaska from 1980–2006. Ocean survival of fish migrating as subyearlings covaried strongly from Vancouver Island to California. Short-term correlations between adjacent regions indicated this covariability increased, beginning in the early 1990s. Chinook salmon survivals exhibited a larger spatial scale of variability (50% correlation scale: 706 km) than those reported for other northeast Pacific Ocean salmon. This scale is similar to that of environmental variables related to ecosystem productivity, such as summer upwelling (50% correlation scale: 746 km) and sea surface temperature (50% correlation scale: 500–600 km). Chinook salmon ocean survival rates from southeastern Alaska and south of Vancouver Island were not inversely correlated, in contrast to earlier observations based on catch data, but note that our data differ in temporal and spatial coverage from those studies. The increased covariability in Chinook salmon ocean survival suggests that the marine phase contributes little to the reduction in risk across populations attributable to the portfolio effect. In addition, survival of fish migrating as yearlings from the Columbia River covaried with Chinook salmon survival from the northernmost regions, consistent with our understanding of their migration patterns.


1987 ◽  
Vol 44 (6) ◽  
pp. 1213-1220 ◽  
Author(s):  
Robert G. Kope

A separable virtual population analysis model is developed for Pacific salmon which utilizes aged catch and spawning escapement data. This model is applied to marked chinook salmon, Oncorhynchus tshawytscha, from California's Central Valley hatcheries using weighted least squares criteria for goodness of fit. Structural inadequacies of the model apparently produce discrepancies between predicted values and observed data that are of about the same magnitude as the observational errors in estimating the recoveries of marked fish. Some of the inadequacy of the model may be due to environmentally induced variability in population parameters, but for the marked fish used in this analysis, some of the variability is probably due to year-to-year variability in hatchery practices. From this analysis it appears that although nominal fishing effort has been relatively stable or even declining in recent years, fishing mortality has been increasing with the exception of 1983 and 1984.


2016 ◽  
Vol 73 (6) ◽  
pp. 921-934 ◽  
Author(s):  
R. Kirk Schroeder ◽  
Luke D. Whitman ◽  
Brian Cannon ◽  
Paul Olmsted

Migratory and rearing pathways of juvenile spring Chinook salmon (Oncorhynchus tshawytscha) were documented in the Willamette River basin to identify life histories and estimate their contribution to smolt production and population stability. We identified six primary life histories that included two phenotypes for early migratory tactics: fry that migrated up to 140–200 km shortly after emergence (movers) and fish that reared for 8–16 months in natal areas (stayers). Peak emigration of juvenile salmon from the Willamette River was in June–July (subyearling smolts), March–May (yearling smolts), and November–December (considered as “autumn smolts”). Alternative migratory behaviors of juvenile salmon were associated with extensive use of diverse habitats that eventually encompassed up to 400 rkm of the basin, including tributaries in natal areas and large rivers. Juvenile salmon that reared in natal reaches and migrated as yearlings were the most prevalent life history and had the lowest temporal variability. However, the total productivity of the basin was increased by the contribution of fish with dispersive life histories, which represented over 50% of the total smolt production. Life-history diversity reduced the variability in the total smolt population by 35% over the weighted mean of individual life histories, providing evidence of a considerable portfolio effect through the asynchronous contributions of life histories. Protecting and restoring a diverse suite of connected habitats in the Willamette River basin will promote the development and expression of juvenile life histories, thereby providing stability and resilience to native salmon populations.


2021 ◽  
Author(s):  
Colby L. Hause ◽  
Gabriel P. Singer ◽  
Rebecca A. Buchanan ◽  
Dennis E. Cocherell ◽  
Nann A. Fangue ◽  
...  

AbstractExtirpation of the Central Valley spring-run Chinook Salmon ESU (Oncorhynchus tshawytscha) from the San Joaquin River is emblematic of salmonid declines across the Pacific Northwest. Habitat restoration and fish reintroduction efforts are ongoing, but recent telemetry studies have revealed low outmigration survival of juveniles to the ocean. Previous investigations have focused on modeling survival relative to river discharge and geographic regions, but have largely overlooked the effects of habitat variability. To evaluate the link between environmental conditions and survival of juvenile spring-run Chinook Salmon, we combined high spatial resolution habitat mapping approaches with acoustic telemetry along a 150 km section of the San Joaquin River during the spring of 2019. While overall outmigration survival was low (5%), our habitat-based classification scheme described variation in survival of acoustic-tagged smolts better than other candidate models based on geography or distance. There were two regional mortality sinks evident along the longitudinal profile of the river, revealing poor survival in areas that shared warmer temperatures but that diverged in chlorophyll-α, fDOM, turbidity and dissolved oxygen levels. These findings demonstrate the value of integrating river habitat classification frameworks to improve our understanding of survival dynamics of imperiled fish populations. Importantly, our data generation and modeling methods can be applied to a wide variety of fish species that transit heterogeneous and diverse habitat types.


Sign in / Sign up

Export Citation Format

Share Document