Microheterogenization of Solid-Solution Crystals in Two-Phase Alloys

Author(s):  
V. M. Glazov ◽  
V. N. Vigdorovich
Keyword(s):  
Author(s):  
R.W. Carpenter ◽  
Changhai Li ◽  
David J. Smith

Binary Nb-Hf alloys exhibit a wide bcc solid solution phase field at temperatures above the Hfα→ß transition (2023K) and a two phase bcc+hcp field at lower temperatures. The β solvus exhibits a small slope above about 1500K, suggesting the possible existence of a miscibility gap. An earlier investigation showed that two morphological forms of precipitate occur during the bcc→hcp transformation. The equilibrium morphology is rod-type with axes along <113> bcc. The crystallographic habit of the rod precipitate follows the Burgers relations: {110}||{0001}, <112> || <1010>. The earlier metastable form, transition α, occurs as thin discs with {100} habit. The {100} discs induce large strains in the matrix. Selected area diffraction examination of regions ∼2 microns in diameter containing many disc precipitates showed that, a diffuse intensity distribution whose symmetry resembled the distribution of equilibrium α Bragg spots was associated with the disc precipitate.


2021 ◽  
pp. 130386
Author(s):  
Anna Korneva ◽  
Askar Kilmametov ◽  
Yuri Zavorotnev ◽  
Leonid Metlov ◽  
Olga Popova ◽  
...  

2016 ◽  
Vol 873 ◽  
pp. 18-22
Author(s):  
Ming Li Huang ◽  
Xue Shen ◽  
Hong Xiao Li

The equilibrium alloys closed to Mg-Nd side in the Mg-rich corner of the Mg-Zn-Nd system at 400°C have been investigated by scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The binary solid solutions Mg12Nd and Mg3Nd with the solubility of Zn have been identified. The maximum solubility of Zn in Mg12Nd is 4.8at%, and Mg12Nd phase can be in equilibrium with Mg solid solution. However, only when the solubility range of Zn in 26at%~32.2at%, Mg3Nd can be in two-phase equilibrium with Mg solid solution. As the results, two two-phase regions as Mg+Mg12Nd and Mg+Mg3Nd and a three-phase region as Mg+Mg12Nd+Mg3Nd in Mg-Nd-Zn ternary isothermal section at 400°C have been identified.


1985 ◽  
Vol 49 (353) ◽  
pp. 547-554 ◽  
Author(s):  
M. Shahmiri ◽  
S. Murphy ◽  
D. J. Vaughan

AbstractThe crystal structure and compositional limits of the ternary compound Pt2FeCu (tulameenite), formed either by quenching from above the critical temperature of 1178°C or by slow cooling, have been investigated using X-ray diffraction, transmission electron microscopy, differential thermal analysis and electron probe microanalysis.The crystal structure of Pt2FeCu, established using electron density maps constructed from the measured and calculated intensities of X-ray diffraction patterns of powdered specimens, has the (000) and (½½0) lattice sites occupied by Pt atoms and the (½0½) and (0½½) sites occupied by either Cu or Fe atoms in a random manner. The resulting face-centred tetragonal structure undergoes a disordering transformation at the critical temperature to a postulated non-quenchable face-centred cubic structure. Stresses on quenching, arising from the ordering reaction, are relieved by twinning along {101} planes or by recrystallization along with deformation twinning; always involving grain boundary fracturing.Phase relations in the system Pt-Fe-Cu have been investigated through the construction of isothermal sections at 1000 and 600°C. At 1000°C there is an extensive single phase region of solid solution around Pt2FeCu and extending to the binary composition PtFe. At 600°C the composition Pt2FeCu lies just outside this now reduced area of solid solution in a two-phase field. Comparison of the experimental results with data for tulameenite suggests that some observed compositions may be metastably preserved. The occurrence of fine veinlets of silicate or other gangue minerals in tulameenite is suggested to result from grain boundary fracturing on cooling below the critical temperature of 1178°C and to be evidence of a magmatic origin.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 299 ◽  
Author(s):  
Martin Friák ◽  
Vilma Buršíková ◽  
Naděžda Pizúrová ◽  
Jana Pavlů ◽  
Yvonna Jirásková ◽  
...  

We combine theoretical and experimental tools to study elastic properties of Fe-Al-Ti superalloys. Focusing on samples with chemical composition Fe71Al22Ti7, we use transmission electron microscopy (TEM) to detect their two-phase superalloy nano-structure (consisting of cuboids embedded into a matrix). The chemical composition of both phases, Fe66.2Al23.3Ti10.5 for cuboids and Fe81Al19 (with about 1% or less of Ti) for the matrix, was determined from an Energy-Dispersive X-ray Spectroscopy (EDS) analysis. The phase of cuboids is found to be a rather strongly off-stoichiometric (Fe-rich and Ti-poor) variant of Heusler Fe2TiAl intermetallic compound with the L21 structure. The phase of the matrix is a solid solution of Al atoms in a ferromagnetic body-centered cubic (bcc) Fe. Quantum-mechanical calculations were employed to obtain an insight into elastic properties of the two phases. Three distributions of chemical species were simulated for the phase of cuboids (A2, B2 and L21) in order to determine a sublattice preference of the excess Fe atoms. The lowest formation energy was obtained when the excess Fe atoms form a solid solution with the Ti atoms at the Ti-sublattice within the Heusler L21 phase (L21 variant). Similarly, three configurations of Al atoms in the phase of the matrix with different level of order (A2, B2 and D03) were simulated. The computed formation energy is the lowest when all the 1st and 2nd nearest-neighbor Al-Al pairs are eliminated (the D03 variant). Next, the elastic tensors of all phases were calculated. The maximum Young’s modulus is found to increase with increasing chemical order. Further we simulated an anti-phase boundary (APB) in the L21 phase of cuboids and observed an elastic softening (as another effect of the APB, we also predict a significant increase of the total magnetic moment by 140% when compared with the APB-free material). Finally, to validate these predicted trends, a nano-scale dynamical mechanical analysis (nanoDMA) was used to probe elasticity of phases. Consistent with the prediction, the cuboids were found stiffer.


1990 ◽  
Vol 54 (376) ◽  
pp. 413-418 ◽  
Author(s):  
H. A. Buckley ◽  
A. R. Woolley

AbstractCarbonates of the magnesite-siderite series have been found and analysed in carbonatites from the Lueshe, Newania, Kangankunde, and Chipman Lake complexes. This series has been represented until now only by a few X-ray identifications of magnesite and three published analyses of siderite and breunnerite (magnesian siderite). Most of the siderite identified in carbonatites in the past has proved to be ankerite, but the new data define the complete solid-solution series from magnesite to siderite. They occur together with dolomite and ankerite and in one rock with calcite. The magnesites, ferroan magnesites and some magnesian siderites may be metasomatic/hydrothermal in origin but magnesian siderite from Chipman Lake appears to have crystallized in the two-phase calcite + siderite field in the subsolidus CaCO3-MgCO3-FeCO3 system. Textural evidence in Newania carbonatites indicates that ferroan magnesite, which co-exists with ankerite, is a primary liquidus phase and it is proposed that the Newania carbonatite evolved directly from a Ca-poor, Mg-rich carbonatitic liquid generated by partial melting of phlogopite-carbonate peridotite in the mantle at pressures >32 kbar.


2014 ◽  
Vol 353 ◽  
pp. 263-268
Author(s):  
Evgeny N. Selivanov ◽  
L.Yu. Udoeva ◽  
N.I. Selmenskich

The effect of Na2S on the phase composition and microstructure of tempered Cu2S-Ni3S2 alloys was studied by X-ray diffraction, optical microscopy and electron probe microanalysis (EPMA). It was found that quick crystallization of the sulfide melt leads to separation into two phases - Ni3S2 and a solid solution of Cu2S with Na2Cu4S5, moreover, nickel is concentrated in large particles and copper – in small ones. In contrast to the fine dendrite solidification of granular Cu2S-Ni3S2 alloys, in the ternary system there is a well-defined two-phase microstructure with rounded borders of the interface. Friability and a low microhardness of Cu2S - Na2Cu4S5 solid solution provide an autodecomposition of the sulfides melt by quenching into water (granulation). The degree of separation of copper and nickel depends on the overheating temperature and a quantity of Na2S in melt. The results can be used to hydrometallurgical processing of copper-nickel convert matt.


1998 ◽  
Vol 552 ◽  
Author(s):  
R. Sakidja ◽  
G. Wilde ◽  
H. Sieber ◽  
J. H. Perepezko

ABSTRACTThe microstructure evolution involving Mo-B-Si as-solidified alloys with compositions in the Mo solid-solution(ss) + T2 two-phase field has been examined following arc-melting and rapid solidification processing (RSP). Several solidification pathways in the arc-melted alloys have been identified. Compositional segregation during conventional solidification results in the formation of additional phases such as borides in the arc-melted alloys which require a prolonged solid-state annealing to obtain equilibrated two-phase microstructures. The RSP methods employed, splat-quenching (SQ) and powder drop tube processing (DTP), allow for significant microstructural modifications that facilitate the attainment of uniform dispersions of Mo(ss) phase in a T2 phase matrix.


Sign in / Sign up

Export Citation Format

Share Document