Use of Toxicokinetic Principles in Drug Development: Bridging Preclinical and Clinical Studies

Author(s):  
Mauricio Leal ◽  
Avraham Yacobi ◽  
Vijay K. Batra
2013 ◽  
Vol 8 (3) ◽  
pp. 243-252 ◽  
Author(s):  
Conor Crowley ◽  
James Min-Leong Wong ◽  
Daniel Mark Fisher ◽  
Wasim S. Khan

2019 ◽  
Vol 39 (2) ◽  
pp. 141-150
Author(s):  
Nicola J. Stagg ◽  
Hanan N. Ghantous ◽  
Robert Roth ◽  
Kenneth L. Hastings

Nonclinical toxicology studies are conducted to characterize the potential toxicities and establish a safe starting dose for new drugs in clinical studies, but the question remains as to how predictable/translatable the nonclinical safety findings are to humans. In many cases, there is good concordance between nonclinical species and patients. However, there are cases for which there is a lack of predictivity or translatability that led to early termination of clinical studies due to unanticipated toxicities or early termination of programs before making it to the clinic due to unacceptable nonclinical toxicities assumed to be translatable. A few case examples of safety findings that are translatable versus safety findings that are not translatable and why they are not translateable were presented as a symposium at the 38th Annual Meeting of the American College of Toxicology in Palm Springs, California, and are discussed in this article.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1045
Author(s):  
Marta B. Lopes ◽  
Eduarda P. Martins ◽  
Susana Vinga ◽  
Bruno M. Costa

Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 145
Author(s):  
Su-In Hwang ◽  
Young-Jin Yoon ◽  
Soo-Hyun Sung ◽  
Ki-Tae Ha ◽  
Jang-Kyung Park

Animal toxins and venoms have recently been developed as cancer treatments possessing tumor cell growth-inhibitory, antiangiogenesis, and proapoptotic effects. Endometriosis is a common benign gynecological disorder in reproductive-age women, and no definite treatment for this disorder is without severe side effects. As endometriosis and malignant tumors share similar characteristics (progressive, invasive, estrogen-dependent growth, and recurrence), animal toxins and venoms are thought to be effective against endometriosis. The objective of this study was to outline studies using toxic animal-based medicinal materials (TMM) as endometriosis treatment and to explore its clinical applicability. Preclinical and clinical studies using TMM were searched for in four databases from inception to October 2020. A total of 20 studies of TMM on endometriosis were included. In eight clinical studies, herbal medicines containing TMM were effective in relieving symptoms of endometriosis, with no side effects. In twelve experimental studies, the main therapeutic mechanisms of TMM against endometriosis were proapoptotic, antiangiogenesis, estrogen level-reducing, and possible anti-inflammatory effects. TMM are thus considered promising sources for the development of an effective treatment method for endometriosis. Further studies are needed to clarify the therapeutic mechanism of TMM against endometriosis and to provide sufficient grounds for clinical application.


2021 ◽  
Vol 22 (9) ◽  
pp. 4666
Author(s):  
Paramita Basu ◽  
Camelia Maier ◽  
Arpita Basu

Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.


Sign in / Sign up

Export Citation Format

Share Document