Integral Representations of Functions of Classes L p l (G) and Embedding Theorems

Author(s):  
V. P. Il’in
2010 ◽  
Vol 07 (08) ◽  
pp. 1371-1384 ◽  
Author(s):  
SHABAN KHIDR ◽  
KHALEAL YEIHIA

For smooth functions defined on a bounded domain satisfying the weak σ-horn condition, integral representations in terms of their derivatives and their differences are introduced. These representations are employed to prove embedding theorems in the [Formula: see text]-function spaces, [Formula: see text] with [Formula: see text] for all i = 0, 1, 2, …, n and j = 1, 2, …, n.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter presents a selection of some of the most important results in the theory of Sobolev spacesn. Special emphasis is placed on embedding theorems and the question as to whether an embedding map is compact or not. Some results concerning the k-set contraction nature of certain embedding maps are given, for both bounded and unbounded space domains: also the approximation numbers of embedding maps are estimated and these estimates used to classify the embeddings.


2020 ◽  
Vol 224 (2) ◽  
pp. 469-506 ◽  
Author(s):  
Pierre-Alain Jacqmin
Keyword(s):  

1995 ◽  
Vol 10 (08) ◽  
pp. 1219-1236 ◽  
Author(s):  
S. KHARCHEV ◽  
A. MARSHAKOV

We study the role of integral representations in the description of nonperturbative solutions to c ≤ 1 string theory. A generic solution is determined by two functions, W(x) and Q(x), which behave at infinity like xp and xq respectively. The integral formula for arbitrary (p, q) models is derived, which explicitly realizes a duality transformation between (p, q) and (q, p) 2D gravity solutions. We also discuss the exact solutions to the string equation and reduction condition and present several explicit examples.


2003 ◽  
Vol 10 (3) ◽  
pp. 467-480
Author(s):  
Igor Chudinovich ◽  
Christian Constanda

Abstract The existence of distributional solutions is investigated for the time-dependent bending of a plate with transverse shear deformation under mixed boundary conditions. The problem is then reduced to nonstationary boundary integral equations and the existence and uniqueness of solutions to the latter are studied in appropriate Sobolev spaces.


2008 ◽  
Vol 15 (4) ◽  
pp. 739-752
Author(s):  
Gigla Oniani ◽  
Lamara Tsibadze

Abstract We consider analytic and pluriharmonic functions belonging to the classes 𝐵𝑝(Ω) and 𝑏𝑝(Ω) and defined in the ball . The theorems established in the paper make it possible to obtain some integral representations of functions of the above-mentioned classes. The existence of bounded projectors from the space 𝐿(ρ, Ω) into the space 𝐵𝑝(Ω) and from the space 𝐿(ρ, Ω) into the space 𝑏𝑝(Ω) is proved. Also, consideration is given to the existence of boundary values of fractional integrals of functions of the spaces 𝐵𝑝(Ω) and 𝑏𝑝(Ω).


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Changbao Pang ◽  
Antti Perälä ◽  
Maofa Wang

AbstractWe establish an embedding theorem for the weighted Bergman spaces induced by a positive Borel measure $$d\omega (y)dx$$ d ω ( y ) d x with the doubling property $$\omega (0,2t)\le C\omega (0,t)$$ ω ( 0 , 2 t ) ≤ C ω ( 0 , t ) . The characterization is given in terms of Carleson squares on the upper half-plane. As special cases, our result covers the standard weights and logarithmic weights. As an application, we also establish the boundedness of the area operator.


2007 ◽  
Vol 14 (3) ◽  
pp. 543-564
Author(s):  
Yuri G. Reshetnyak

Abstract In the space , 𝑛-dimensional surfaces are considered having the parametrizations which are functions of the Sobolev class with 𝑝 > 𝑛. The first and the second fundamental tensor are defined. The Peterson–Codazzi equations for such functions are understood in some generalized sense. It is proved that if the first and the second fundamental tensor of one surface are close to the first and, respectively, to the second fundamental tensor of the other surface, then these surfaces will be close up to the motion of the space . A difference between the fundamental tensors and the nearness of the surfaces are measured with the help of suitable 𝑊-norms. The proofs are based on a generalization of Frobenius' theorem about completely integrable systems of the differential equations which was proved by Yu. E. Borovskiĭ. The integral representations of functions by differential operators with complete integrability condition are used, which were elaborated by the author in his other works.


Sign in / Sign up

Export Citation Format

Share Document