Biological Control of Root Diseases with Pseudomonads

Author(s):  
Albert Rovira ◽  
Maarten Ryder ◽  
Adrian Harris
1997 ◽  
Vol 87 (5) ◽  
pp. 551-558 ◽  
Author(s):  
Dal-Soo Kim ◽  
R. James Cook ◽  
David M. Weller

Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40°C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80°C for 30 min), macerated, and dilution-plated on 1/10-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15°C; provided significant suppression of all three root diseases at 15°C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4°C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.


Nature ◽  
1966 ◽  
Vol 210 (5034) ◽  
pp. 344-344
Author(s):  
P. H. GREGORY

2021 ◽  
pp. 197-223
Author(s):  
Shou-Hua Wang

Abstract This paper deals with diagnosis of hemp diseases, including root rot caused by Fusarium, Pythium, Rhizoctonia and Enterobacter species; and root knot caused by Meloidogyne species and other plant-parasitic nematodes and root disease complex. Field diagnosis through symptoms, problem classification, sampling, laboratory diagnosis by visual and microscopic examinations, isolation and colony observation, DNA-based or morphological identification, pathogenicity test and key diagnostic evidence are described. Root disease management is discussed, focusing on the prevention and periodical monitoring, mitigating environmental stress, amending soil with biological control agents, fallowing fields and rotating crops, and treating soil with fungicides.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Orsolya Kedves ◽  
Danish Shahab ◽  
Simang Champramary ◽  
Liqiong Chen ◽  
Boris Indic ◽  
...  

Armillarioids, including the genera Armillaria, Desarmillaria and Guyanagaster, represent white-rot specific fungal saprotrophs with soilborne pathogenic potentials on woody hosts. They propagate in the soil by root-like rhizomorphs, connecting between susceptible root sections of their hosts, and often forming extended colonies in native forests. Pathogenic abilities of Armillaria and Desarmillaria genets can readily manifest in compromised hosts, or hosts with full vigour can be invaded by virulent mycelia when exposed to a larger number of newly formed genets. Armillaria root rot-related symptoms are indicators of ecological imbalances in native forests and plantations at the rhizosphere levels, often related to abiotic environmental threats, and most likely unfavourable changes in the microbiome compositions in the interactive zone of the roots. The less-studied biotic impacts that contribute to armillarioid host infection include fungi and insects, as well as forest conditions. On the other hand, negative biotic impactors, like bacterial communities, antagonistic fungi, nematodes and plant-derived substances may find applications in the environment-friendly, biological control of armillarioid root diseases, which can be used instead of, or in combination with the classical, but frequently problematic silvicultural and chemical control measures.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 750B-750
Author(s):  
M.L. Matheny

One of the main difficulties in controlling root diseases biologically has been the inability of biocontrol agents to establish and persist in the rhizosphere. The inability of biocontrol agents to establish and persist is often attributed to competition from indigenous microorganisms for space and nutrients and to fluctuations in environmental conditions. The use of biocontrol agents over the entire geographic range of a crop also has been limited by differences in environmental and edaphic conditions from field to field and region to region. An advantage of hydroponic crop production in greenhouses is that environmental conditions such as temperature, moisture, pH, and growth medium can be consistently controlled in a house and from site to site. An additional advantage of many hydroponic systems is that they are virtually sterile upon planting. This initial period of virtual sterility greatly reduces competition for an introduced biocontrol agent. In addition, these systems are usually pathogen-free upon planting allowing the establishment of a biocontrol agent prior to pathogen introduction. Last, the temperatures, high moisture levels, and pH ranges of hydroponic systems can be ideal for the proliferation of many biocontrol agents. With all of these advantages for the use of biocontrol agents in hydroponic systems, our company, and many labs around the world, have focused their attention on developing biological control agents for these systems. I will provide a review of research focused on controlling root diseases of vegetables grown in rockwool and other hydroponic systems.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document