Chemical and Molecular Probes of Nucleoside Transport Mechanisms in Mammalian Tissues

1991 ◽  
pp. 399-421 ◽  
Author(s):  
Simon M. Jarvis
2004 ◽  
Vol 82 (12) ◽  
pp. 1061-1067 ◽  
Author(s):  
D Dekanski ◽  
V Piperski ◽  
J Tasić ◽  
I D Marković ◽  
M Jokanović ◽  
...  

The purpose of this study was to investigate the characteristics of transport of endogenous nucleosides into cardiac tissue from coronary circulation. The study was performed on the isolated perfused guinea pig heart, using the rapid paired tracers single-pass technique. The maximal cellular uptake (Umax) and total cellular uptake (Utot) of adenosine, deoxyadenosine, thymidine, uridine, and cytidine were determined. The cellular uptake of adenosine was significantly higher than the cellular uptake of other studied nucleosides. To elucidate the mechanisms of nucleoside transport, competition studies were performed and the influence of S-(p-nitrobenzyl)-6-thioinosine (NBTI) and sodium ion absence on Umax and Utot was investigated. Self- and cross-inhibition studies indicated the saturable mechanism of nucleosides transport into cardiac tissue and the involvement of different transport mechanisms for purine and pyrimidine nucleosides. The study also showed that both equilibrative-sensitive (es) and sodium-dependent transport were responsible for adenosine and thymidine cellular uptake.Key words: nucleosides, transport, heart.


Author(s):  
Jared Grantham ◽  
Larry Welling

In the course of urine formation in mammalian kidneys over 90% of the glomerular filtrate moves from the tubular lumen into the peritubular capillaries by both active and passive transport mechanisms. In all of the morphologically distinct segments of the renal tubule, e.g. proximal tubule, loop of Henle and distal nephron, the tubular absorbate passes through a basement membrane which rests against the basilar surface of the epithelial cells. The basement membrane is in a strategic location to affect the geometry of the tubules and to influence the movement of tubular absorbate into the renal interstitium. In the present studies we have determined directly some of the mechanical and permeability characteristics of tubular basement membranes.


Author(s):  
W. E. Rigsby ◽  
D. M. Hinton ◽  
V. J. Hurst ◽  
P. C. McCaskey

Crystalline intracellular inclusions are rarely seen in mammalian tissues and are often difficult to positively identify. Lymph node and liver tissue samples were obtained from two cows which had been rejected at the slaughter house due to the abnormal appearance of these organs in the animals. The samples were fixed in formaldehyde and some of the fixed material was embedded in paraffin. Examination of the paraffin sections with polarized light microscopy revealed the presence of numerous crystals in both hepatic and lymph tissue sections. Tissue sections were then deparaffinized in xylene, mounted, carbon coated, and examined in a Phillips 505T SEM equipped with a Tracor Northern X-ray Energy Dispersive Spectroscopy (EDS) system. Crystals were obscured by cellular components and membranes so that EDS spectra were only obtainable from whole cells. Tissue samples which had been fixed but not paraffin-embedded were dehydrated, embedded in Spurrs plastic, and sectioned.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


1973 ◽  
Vol 131 (1) ◽  
pp. 109-114 ◽  
Author(s):  
G. M. Green
Keyword(s):  

Author(s):  
A.W. Smith ◽  
A.D. Gordon

2016 ◽  
Vol 186 (6) ◽  
pp. 640-646
Author(s):  
Alexei V. Samokhvalov ◽  
Alexander S. Mel'nikov ◽  
Alexander I. Buzdin

Sign in / Sign up

Export Citation Format

Share Document