Nonreceptor Tyrosine Kinases in Aggregation-Mediated Cell Activation

Author(s):  
Brian Seed ◽  
Waldemar Kolanus ◽  
Charles Romeo ◽  
Ramnik Xavier
2005 ◽  
Vol 12 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Jennifer C. C. Neale ◽  
Thomas P. Kenny ◽  
Ronald S. Tjeerdema ◽  
M. Eric Gershwin

Mechanisms underlyingin vitroimmunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs)FynandItk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP), 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169), a model immunotoxic PCB, or DMSO (vehicle control). Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKsFynandItkwere both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part) by disruption of T cell receptor (TCR) signaling and cytokine production.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Sundaravadivel Balasubramanian ◽  
Harinath Kasiganesan ◽  
Lakeya Quinones ◽  
Yuhua Zhang ◽  
Amy Bradshaw ◽  
...  

During prolonged hypertrophic insult to the myocardium, while the function of cardiomyocytes needs to be protected, the hyperactivation of cardiac fibroblasts has to be curbed to prevent fibrosis. Previously, we showed that integrin-mediated non-receptor tyrosine kinase (NRTK) activation is required for normal functioning of both cardiac fibroblasts and cardiomyocytes. We hypothesized that inhibition of NRTKs in cardiac fibroblasts without affecting cardiomyocytes would be beneficial to the stressed myocardium. Our initial studies using kinase inactive forms of Src, Pyk2 and FAK expressed adenovirally in isolated primary cardiac fibroblasts showed that the pro-fibrotic signaling events as studied by fibronectin and collagen deposition are downregulated. Our in vivo studies in mouse transverse aortic constriction (TAC) model suggest that dasatinib, a multikinase NRTK inhibitor administration via a peritoneally implanted mini-osmotic pump is able to preserve ventricular geometry and function and reduce the accumulation of fibrotic extracellular matrix (ECM) proteins upon 4 wk pressure overload. Data obtained from cell culture experiments with kinase inactive NRTKs and dasatinib suggest that NRTK inhibition is able to reduce the proliferation, migration and mitogenic signaling in cardiac fibroblasts without affecting the cell survival pathways in cardiomyocytes. These data indicate that NRTKs play a significant pro-fibrotic role in cardiac fibroblasts and curbing the activity of NRTKs could be a potential therapeutic approach to treat fibrosis in hypertrophic heart diseases.


2002 ◽  
Vol 115 (2) ◽  
pp. 433-443
Author(s):  
Alix Delaguillaumie ◽  
Cécile Lagaudrière-Gesbert ◽  
Michel R. Popoff ◽  
Hélène Conjeaud

Activation of T lymphocytes requires the engagement of the T-cell receptor and costimulation molecules through cell-to-cell contacts. The tetraspanin CD82 has previously been shown to act as a cytoskeleton-dependent costimulation molecule. We show here that CD82 engagement leads to the tyrosine phosphorylation and association of both the Rho GTPases guanosine exchange factor Vav1 and adapter protein SLP76, suggesting that Rho GTPases participate in CD82 signaling. Indeed, broad inactivation of all Rho GTPases, or a specific blockade of RhoA, Rac1 or Cdc42, inhibited the morphological changes linked to CD82 engagement but failed to modulate the inducible association of CD82 with the actin network. Rho GTPase inactivation, as well as actin depolymerization, reduced the ability of CD82 to phosphorylate Vav and SLP76 and to potentiate the phosphorylation of two early TcR signaling intermediates: the tyrosine kinases ZAP70 and membrane adapter LAT. Taken together, this suggests that an amplification loop, via early Vav and SLP76 phosphorylations and Rho-GTPases activation, is initiated by CD82 association with the cytoskeleton, which permits cytoskeletal rearrangements and costimulatory activity. Moreover, the involvement of CD82 in the formation of the immunological synapse is strongly suggested by its accumulation at the site of TcR engagement. This novel link between a tetraspanin and the Rho GTPase cascade could explain why tetraspanins, which are known to form heterocomplexes, are involved in cell activation, adhesion, growth and metastasis.


2003 ◽  
Vol 23 (11) ◽  
pp. 3884-3896 ◽  
Author(s):  
Keith Q. Tanis ◽  
Darren Veach ◽  
Henry S. Duewel ◽  
William G. Bornmann ◽  
Anthony J. Koleske

ABSTRACT The activities of the related Abl and Arg nonreceptor tyrosine kinases are kept under tight control in cells, but exposure to several different stimuli results in a two- to fivefold stimulation of kinase activity. Following the breakdown of inhibitory intramolecular interactions, Abl activation requires phosphorylation on several tyrosine residues, including a tyrosine in its activation loop. These activating phosphorylations have been proposed to occur either through autophosphorylation by Abl in trans or through phosphorylation of Abl by the Src nonreceptor tyrosine kinase. We show here that these two pathways mediate phosphorylation at distinct sites in Abl and Arg and have additive effects on Abl and Arg kinase activation. Abl and Arg autophosphorylate at several sites outside the activation loop, leading to 5.2- and 6.2-fold increases in kinase activity, respectively. We also find that the Src family kinase Hck phosphorylates the Abl and Arg activation loops, leading to an additional twofold stimulation of kinase activity. The autoactivation pathway may allow Abl family kinases to integrate or amplify cues relayed by Src family kinases from cell surface receptors.


2003 ◽  
Vol 285 (4) ◽  
pp. H1753-H1758 ◽  
Author(s):  
Jun Zhang ◽  
Peipei Ping ◽  
Thomas M. Vondriska ◽  
Xian-Liang Tang ◽  
Guang-Wu Wang ◽  
...  

Previous studies indicated that activation of PKC and Src tyrosine kinases by ischemic preconditioning (PC) may participate in the activation of NF-κB. However, the molecular mechanisms underlying activation of NF-κB during ischemic PC remain unknown. In the hearts of conscious rabbits, it was found that ischemic PC (6 cycles of 4-min coronary occlusion and 4-min reperfusion) significantly induced both tyrosine (+226.9 ± 42%) and serine (+137.0 ± 36%) phosphorylation of the NF-κB inhibitory protein IκB-α, concomitant with increased activation of the IκB-α kinases IKKα (+255.0 ± 46%) and IKKβ (+173.1 ± 35%). Furthermore, both tyrosine and serine phosphorylation of IκB-α were blocked by pretreatment with either the nonreceptor tyrosine kinase inhibitor lavendustin-A (LD-A) or the PKC inhibitor chelerythrine (Che) (both given at doses previously shown to block ischemic PC). Interestingly, Che completely abolished PC-induced activation of IKKα/β, whereas LD-A had no effect. In addition, IκB-α protein level did not change during ischemic PC. Together, these data indicate that ischemic PC-induced activation of NF-κB occurs through both tyrosine and serine phosphorylation of IκB-α and is regulated by nonreceptor tyrosine kinases and PKC.


2010 ◽  
Vol 19 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Alvaro Yogi ◽  
Sarah E OʼConnor ◽  
Glaucia E Callera ◽  
Rita C Tostes ◽  
Rhian M Touyz

2000 ◽  
Vol 165 (3) ◽  
pp. 1210-1219 ◽  
Author(s):  
Yuko Kawakami ◽  
Jiro Kitaura ◽  
Anne B. Satterthwaite ◽  
Roberta M. Kato ◽  
Koichi Asai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document