Abstract P153: Role of Nonreceptor Tyrosine Kinases in Cardiac Fibrosis in a Mouse Model of Pressure Overload Hypertrophy

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Sundaravadivel Balasubramanian ◽  
Harinath Kasiganesan ◽  
Lakeya Quinones ◽  
Yuhua Zhang ◽  
Amy Bradshaw ◽  
...  

During prolonged hypertrophic insult to the myocardium, while the function of cardiomyocytes needs to be protected, the hyperactivation of cardiac fibroblasts has to be curbed to prevent fibrosis. Previously, we showed that integrin-mediated non-receptor tyrosine kinase (NRTK) activation is required for normal functioning of both cardiac fibroblasts and cardiomyocytes. We hypothesized that inhibition of NRTKs in cardiac fibroblasts without affecting cardiomyocytes would be beneficial to the stressed myocardium. Our initial studies using kinase inactive forms of Src, Pyk2 and FAK expressed adenovirally in isolated primary cardiac fibroblasts showed that the pro-fibrotic signaling events as studied by fibronectin and collagen deposition are downregulated. Our in vivo studies in mouse transverse aortic constriction (TAC) model suggest that dasatinib, a multikinase NRTK inhibitor administration via a peritoneally implanted mini-osmotic pump is able to preserve ventricular geometry and function and reduce the accumulation of fibrotic extracellular matrix (ECM) proteins upon 4 wk pressure overload. Data obtained from cell culture experiments with kinase inactive NRTKs and dasatinib suggest that NRTK inhibition is able to reduce the proliferation, migration and mitogenic signaling in cardiac fibroblasts without affecting the cell survival pathways in cardiomyocytes. These data indicate that NRTKs play a significant pro-fibrotic role in cardiac fibroblasts and curbing the activity of NRTKs could be a potential therapeutic approach to treat fibrosis in hypertrophic heart diseases.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
David Barbosa ◽  
Melanie Wehmöller ◽  
Maximilian R Spinner ◽  
Ulrich Rüther ◽  
Margriet Ouwens

Fibrosis, which occurs in various heart diseases like acute myocardial ischemia and pressure overload, is triggered by the differentiation of fibroblasts into myofibroblasts. Dysregulation of this reparative mechanism results in excessive collagen accumulation leading to cardiac stiffness and impaired heart function. The aim of this study was to determine whether the rhubarb anthraquinone Rhein, a drug already used as treatment for chondroarthritis, prevents the transdifferentiation of cardiac fibroblasts. We observed that Rhein pre-treatment ameliorates the cardiac function and reduces adverse remodeling after acute myocardial infarction in mice, in vivo . In primary human cardiac fibroblasts, Rhein incubation dose-dependently inhibited the TGF-β-mediated upregulation of α-SMA, the master marker for myofibrolasts, and prevented the contraction of fibroblast-populated collagen gel lattices upon TGF-β stimulation. Further, Rhein reduced TGFβ-R1 expression in primary human cardiac fibroblast, resulting in decreased SMAD2 phosphorylation and blunting of the fibrogenic response. Furthermore, Rhein stabilized protein levels of SMAD7, a key inhibitor of TGF-β signaling. Collectively, these data show for the first time that Rhein administration prevents cardiac fibrosis in vivo and in vitro by blunting the TGF-β signaling pathway, and identify Rhein as potential therapeutic treatment to prevent excessive fibrosis and adverse remodeling in cardiac pathologies.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3692-3700 ◽  
Author(s):  
Hui-Ping Gu ◽  
Sen Lin ◽  
Ming Xu ◽  
Hai-Yi Yu ◽  
Xiao-Jun Du ◽  
...  

Myocardial fibrosis is a key pathological change in a variety of heart diseases contributing to the development of heart failure, arrhythmias, and sudden death. Recent studies have shown that relaxin prevents and reverses cardiac fibrosis. Endogenous expression of relaxin was elevated in the setting of heart disease; the extent of such up-regulation, however, is insufficient to exert compensatory actions, and the mechanism regulating relaxin expression is poorly defined. In the rat relaxin-1 (RLN1, Chr1) gene promoter region we found presence of repeated guanine (G)-rich sequences, which allowed formation and stabilization of G-quadruplexes with the addition of a G-quadruplex interactive ligand berberine. The G-rich sequences and the G-quadruplexes were localized adjacent to the binding motif of signal transducer and activator of transcription (STAT)3, which negatively regulates relaxin expression. Thus, we hypothesized that the formation and stabilization of G-quadruplexes by berberine could influence relaxin expression. We found that berberine-induced formation of G-quadruplexes did increase relaxin gene expression measured at mRNA and protein levels. Formation of G-quadruplexes significantly reduced STAT3 binding to the promoter of relaxin gene. This was associated with consequent increase in the binding of RNA polymerase II and STAT5a to relaxin gene promoter. In cardiac fibroblasts and rats treated with angiotensin II, berberine was found to suppress fibroblast activation, collagen synthesis, and extent of cardiac fibrosis through up-regulating relaxin. The antifibrotic action of berberine in vitro and in vivo was similar to that by exogenous relaxin. Our findings document a novel therapeutic strategy for fibrosis through up-regulating expression of endogenous relaxin.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Masataka Nishiga ◽  
Takahiro Horie ◽  
Yasuhide Kuwabara ◽  
Osamu Baba ◽  
Tetsushi Nakao ◽  
...  

Background: A highly conserved microRNA, miR-33 is considered as a potential therapeutic target for atherosclerosis, because recent reports, including ours, indicated miR-33 has atherogenic effects by reducing HDL-C. However, the functions of miR-33 in heart failure remain to be elucidated. Methods and results: To clarify the functions of miR-33 involved in cardiac hypertrophy and fibrosis in vivo, we investigated the responses to pressure overload by transverse aortic constriction (TAC) in miR-33 deficient (KO) mice. When subjected to TAC, miR-33 expression level was significantly up-regulated in wild-type (WT) left ventricles, whereas miR-33 KO hearts displayed no less hypertrophic responses than WT hearts. However, interestingly, histological and gene expression analyses showed ameliorated cardiac fibrosis in miR-33 KO hearts compared to WT hearts. Furthermore, we generated cardiac fibroblast specific miR-33 deficient mice, which also showed ameliorated cardiac fibrosis when they were subjected to TAC. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart, because its expression was about 4-folds higher in isolated primary cardiac fibroblasts than cardiomyocytes. Deficiency of miR-33 impaired cell proliferation in primary fibroblasts, which was considered due to altered lipid raft cholesterol content by up-regulated ATP-binding cassette transporter A1/G1. Conclusion: Deficiency of miR-33 impaired fibroblast proliferation in vitro, and ameliorated cardiac fibrosis induced by pressure overload in vivo.


2018 ◽  
Vol 132 (19) ◽  
pp. 2117-2120
Author(s):  
Michael J. Boyer ◽  
Satoru Eguchi

Hypertension is a significant risk factor for the development of cardiovascular ailments, including ischemic heart disease and diastolic dysfunction. In a recent issue of Clinical Science, Li et al. [Clin. Sci. (2018) 132, 1855–1874] report that β-2 microglobulin (β2M) is a novel secreted soluble factor released by cardiac myocytes during pressure overload that promotes profibrotic gene expression in cardiac fibroblasts both in vitro and in vivo. Their study further identifies elevated β2M levels as a possible biomarker for hypertensive patients with cardiac complications. The authors propose a mechanism that mechanically stretched cardiomyocytes release soluble β2M which, through paracrine communication with cardiac fibroblasts, transactivates epidermal growth factor receptor (EGFR) to initiate acute signal transduction and up-regulate profibrotic genes, thereby promoting fibrosis. Here, we will discuss the background, significance of the study, alternative mechanisms, and future directions.


2018 ◽  
Vol 115 (2) ◽  
pp. 315-327 ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Cindy Schriever ◽  
Kana Kusumoto ◽  
Lisa Kramer ◽  
...  

Abstract Aims Sex differences in cardiac fibrosis point to the regulatory role of 17β-Estradiol (E2) in cardiac fibroblasts (CF). We, therefore, asked whether male and female CF in rodent and human models are differentially susceptible to E2, and whether this is related to sex-specific activation of estrogen receptor alpha (ERα) and beta (ERβ). Methods and results In female rat CF (rCF), 24 h E2-treatment (10−8  M) led to a significant down-regulation of collagen I and III expression, whereas both collagens were up-regulated in male rCF. E2-induced sex-specific collagen regulation was also detected in human CF, indicating that this regulation is conserved across species. Using specific ERα- and ERβ-agonists (10−7 M) for 24 h, we identified ERα as repressive and ERβ as inducing factor in female and male rCF, respectively. In addition, E2-induced ERα phosphorylation at Ser118 only in female rCF, whereas Ser105 phosphorylation of ERβ was exclusively found in male rCF. Further, in female rCF we found both ER bound to the collagen I and III promoters using chromatin immunoprecipitation assays. In contrast, in male rCF only ERβ bound to both promoters. In engineered connective tissues (ECT) from rCF, collagen I and III mRNA were down-regulated in female ECT and up-regulated in male ECT by E2. This was accompanied by an impaired condensation of female ECT, whereas male ECT showed an increased condensation and stiffness upon E2-treatment, analysed by rheological measurements. Finally, we confirmed the E2-effect on both collagens in an in vivo mouse model with ovariectomy for E2 depletion, E2 substitution, and pressure overload by transverse aortic constriction. Conclusion The mechanism underlying the sex-specific regulation of collagen I and III in the heart appears to involve E2-mediated differential ERα and ERβ signaling in CFs.


2019 ◽  
Vol 26 (3) ◽  
pp. 564-575 ◽  
Author(s):  
Sergei N. Orlov ◽  
Jennifer La ◽  
Larisa V. Smolyaninova ◽  
Nickolai O. Dulin

Myofibroblast activation is a critical process in the pathogenesis of tissue fibrosis accounting for 45% of all deaths. No effective therapies are available for the treatment of fibrotic diseases. We focus our mini-review on recent data showing that cardiotonic steroids (CTS) that are known as potent inhibitors of Na+,K+-ATPase affect myofibroblast differentiation in a cell type-specific manner. In cultured human lung fibroblasts (HLF), epithelial cells, and cancer-associated fibroblasts, CTS blocked myofibroblast differentiation triggered by profibrotic cytokine TGF-β. In contrast, in the absence of TGF-β, CTS augmented myofibroblast differentiation of cultured cardiac fibroblasts. The cell type-specific action of CTS in myofibroblast differentiation is consistent with data obtained in in vivo studies. Thus, infusion of ouabain via osmotic mini-pumps attenuated the development of lung fibrosis in bleomycintreated mice, whereas marinobufagenin stimulated renal and cardiac fibrosis in rats with experimental renal injury. In TGF-β-treated HLF, suppression of myofibroblast differentiation by ouabain is mediated by elevation of the [Na+]i/[K+]i ratio and is accompanied by upregulation of cyclooxygenase COX-2 and downregulation of TGF-β receptor TGFBR2. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger, suggesting a key role of [Ca2+]i-mediated signaling. What is the relative impact in tissue fibrosis of [Na+]i,[K+]iindependent signaling documented in several types of CTS-treated cells? Do the different conformational transitions of Na+,K+-ATPase α1 subunit in the presence of ouabain and marinobufagenin contribute to their distinct involvement in myofibroblast differentiation? Additional experiments should be done to answer these questions and to develop novel pharmacological approaches for the treatment of fibrosis-related disorders.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Maradumane L Mohan ◽  
Lisa M Grove ◽  
Mitchell A Olman ◽  
Sathyamangla V Naga Prasad

Phosphoinositide 3 Kinase γ (PI3Kγ) belongs to a family of lipid kinases genetic deletion of which leads to pressure overload induced cardiac fibrosis in mice. However, the mechanism by which PI3Kγ mediates cardiac fibrosis is unknown. Cardiac fibrosis is a key underlying cause of fatal heart failure. A well-known fibrogenic mechanism is the generation of myofibroblasts, which are characterized by overexpression of smooth muscle α-actin (αSMA). Myofibroblast is a fibrosis-effector cell that produces pro-fibrotic cytokines and exuberant extracellular matrix that leads to cardiac fibrosis. To evaluate the role of PI3Kγ in fibrotic phenotype, cardiac tissue lysates from 3 months old WT and PI3Kγ null (PI3Kγ -/- ) mice were assessed for the expression of αSMA. Interestingly, there is significant up-regulation of αSMA in PI3Kγ -/- in comparison to littermate controls (WT) even at baseline suggesting that loss of PI3Kγ predisposes the hearts towards fibrosis. To directly confirm that PI3Kγ -/- cardiac fibroblasts (CF) exhibit a myofibroblast phenotype even at baseline, CF were isolated from hearts of WT and PI3Kγ -/- mice and assessed for myofibroblast phenotype by immunostaining for αSMA in stress fibers. Fluorescence microscopy on the CF from PI3Kγ -/- mice showed intense immunostaining for αSMA with greater number of cells exhibiting αSMA in stress fibers when compared to CF from WT mice. Consistently, immunoblotting showed significantly higher αSMA protein levels in PI3Kγ -/- CF compared to WT CF suggesting that PI3Kγ -/- fibroblasts are “primed” to undergo myofibroblast differentiation. To determine the role of kinase-independent function of PI3Kγ in vivo, we generated unique mice lines with cardiomyocyte-specific expression of either kinase-dead PI3Kγ (PI3Kγ inact ) or constitutively active PI3Kγ ( Myr PI3Kγ) in the global PI3Kγ -/- (PI3Kγ inact /PI3Kγ -/- or Myr PI3Kγ/PI3Kγ -/- ) and measured αSMA. Surprisingly, abundance of αSMA protein is significantly reduced in PI3Kγ inact /PI3Kγ -/- when compared to WT and PI3Kγ -/- mice. These data reveal that kinase-independent function of PI3Kγ is a key component in the myocyte-initiated pathway that ultimately drives CF to become myofibroblasts uncovering a novel mechanism of regulating pro-fibrotic signals.


2021 ◽  
Vol 22 (18) ◽  
pp. 9944
Author(s):  
Yongwoon Lim ◽  
Anna Jeong ◽  
Duk-Hwa Kwon ◽  
Yeong-Un Lee ◽  
Young-Kook Kim ◽  
...  

Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-β1 (TGF-β1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-β1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-β1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-β1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bihui Luo ◽  
Zhiyu He ◽  
Shijun Huang ◽  
Jinping Wang ◽  
Dunzheng Han ◽  
...  

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown.Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function.Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-β1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-β1 dependent.Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Lichan Tao ◽  
Xiaoting Wu ◽  
Ping Chen ◽  
Shanshan Li ◽  
Xiaomin Zhang ◽  
...  

Background: Cardiac fibrosis, a result of multiple injurious insults in heart, is a final common manifestation of chronic heart diseases and can lead to end-stage cardiac failure. MicroRNAs (miRNAs, miRs) participate in many essential biological processes and their dysfunction has been implicated in a variety of cardiovascular diseases including fibrosis. miR-433 has recently been implicated in renal fibrosis, however, its role in cardiac fibrosis is unclear. Methods and results: miR-433 was increased in heart samples from dilated cardiomyopathy patients as determined by qRT-PCRs. In addition, miR-433 was also consistently upregulated in mice model of cardiac fibrosis after myocardial infarction or heart failure. Additionally, miR-433 was found to be enriched in fibroblasts compared to cardiomyocytes. In neonatal cardiac fibroblasts, forced expression of miR-433 promoted cell proliferation as indicated by EdU and Ki-67 staining. Moreover, miR-433 overexpression promoted the transdifferentiation of fibroblasts into myofibroblasts as determined by qRT-PCR and western blot for α-SMA and collagen whether in the presence of TGF-β or not, indicating that miR-433 is sufficient to induce fibrosis. In addition, knockdown of miR-433 inhibited proliferation and the transdifferentiation into myofibroblasts, indicating that miR-433 is required for cardiac fibrosis. Interestingly, miR-433 did not affect the migration of cardiac fibroblast. Importantly, miR-433 antagomir could partially attenuate cardiac fibrosis induced by myocardial infarction in mice. Conclusion: both in vitro and in vivo. Inhibition of miR-433 represents a novel therapeutic strategy for cardiac fibrosis.


Sign in / Sign up

Export Citation Format

Share Document