Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes

2002 ◽  
Vol 115 (2) ◽  
pp. 433-443
Author(s):  
Alix Delaguillaumie ◽  
Cécile Lagaudrière-Gesbert ◽  
Michel R. Popoff ◽  
Hélène Conjeaud

Activation of T lymphocytes requires the engagement of the T-cell receptor and costimulation molecules through cell-to-cell contacts. The tetraspanin CD82 has previously been shown to act as a cytoskeleton-dependent costimulation molecule. We show here that CD82 engagement leads to the tyrosine phosphorylation and association of both the Rho GTPases guanosine exchange factor Vav1 and adapter protein SLP76, suggesting that Rho GTPases participate in CD82 signaling. Indeed, broad inactivation of all Rho GTPases, or a specific blockade of RhoA, Rac1 or Cdc42, inhibited the morphological changes linked to CD82 engagement but failed to modulate the inducible association of CD82 with the actin network. Rho GTPase inactivation, as well as actin depolymerization, reduced the ability of CD82 to phosphorylate Vav and SLP76 and to potentiate the phosphorylation of two early TcR signaling intermediates: the tyrosine kinases ZAP70 and membrane adapter LAT. Taken together, this suggests that an amplification loop, via early Vav and SLP76 phosphorylations and Rho-GTPases activation, is initiated by CD82 association with the cytoskeleton, which permits cytoskeletal rearrangements and costimulatory activity. Moreover, the involvement of CD82 in the formation of the immunological synapse is strongly suggested by its accumulation at the site of TcR engagement. This novel link between a tetraspanin and the Rho GTPase cascade could explain why tetraspanins, which are known to form heterocomplexes, are involved in cell activation, adhesion, growth and metastasis.

2005 ◽  
Vol 171 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Katharina Gaus ◽  
Elena Chklovskaia ◽  
Barbara Fazekas de St. Groth ◽  
Wendy Jessup ◽  
Thomas Harder

After activation, T lymphocytes restructure their cell surface to form membrane domains at T cell receptor (TCR)–signaling foci and immunological synapses (ISs). To address whether these rearrangements involve alteration in the structure of the plasma membrane bilayer, we used the fluorescent probe Laurdan to visualize its lipid order. We observed a condensation of the plasma membrane at TCR activation sites. The formation of ordered domains depends on the presence of the transmembrane protein linker for the activation of T cells and Src kinase activity. Moreover, these ordered domains are stabilized by the actin cytoskeleton. Membrane condensation occurs upon TCR stimulation alone but is prolonged by CD28 costimulation with TCR. In ISs, which are formed by conjugates of TCR transgenic T lymphocytes and cognate antigen-presenting cells, similar condensed membrane phases form first in central regions and later at the periphery of synapses. The formation of condensed membrane domains at T cell activation sites biophysically reflects membrane raft accumulation, which has potential implications for signaling at ISs.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Jun-ichiro Suzuki ◽  
Sho Yamasaki ◽  
Jennifer Wu ◽  
Gary A. Koretzky ◽  
Takashi Saito

Abstract The dynamic rearrangement of the actin cytoskeleton plays critical roles in T-cell receptor (TCR) signaling and immunological synapse (IS) formation in T cells. Following actin rearrangement in T cells upon TCR stimulation, we found a unique ring-shaped reorganization of actin called the “actin cloud,” which was specifically induced by outside-in signals through lymphocyte function–associated antigen-1 (LFA-1) engagement. In T-cell–antigen-presenting cell (APC) interactions, the actin cloud is generated in the absence of antigen and localized at the center of the T-cell–APC interface, where it accumulates LFA-1 and tyrosine-phosphorylated proteins. The LFA-1–induced actin cloud formation involves ADAP (adhesion- and degranulation-promoting adaptor protein) phosphorylation, LFA-1/ADAP assembly, and c-Jun N-terminal kinase (JNK) activation, and occurs independent of TCR and its proximal signaling. The formation of the actin cloud lowers the threshold for subsequent T-cell activation. Thus, the actin cloud induced by LFA-1 engagement may serve as a possible platform for LFA-1–mediated costimulatory function for T-cell activation.


2011 ◽  
Vol 208 (12) ◽  
pp. 2545-2560 ◽  
Author(s):  
Hye-Ran Kim ◽  
Byeong-Hun Jeon ◽  
Hyun-Su Lee ◽  
Sin-Hyeog Im ◽  
Masatake Araki ◽  
...  

Immunoglobulin superfamily member 4 (IGSF4) is a known ligand of CRTAM, a receptor expressed in activated NKT and CD8+ T cells, but its function in T cell immunity has not been elucidated. In this study, we show that IGSF4 directly interacts with the T cell receptor (TCR) ζ-chain and enhances TCR signaling by enhancing ζ-chain phosphorylation. Ectopic overexpression of IGSF4 enhances TCR-mediated T cell activation. In contrast, IGSF4 knockdown shows a dramatic decrease in markers associated with T cell activation compared with those in control small interfering RNA. The transmembrane domain is essential for TCR ζ-chain association and clustering to the immunological synapse, and the ectodomain is associated with T cell interaction with antigen-presenting cells (APCs). IGSF4-deficient mice have impaired TCR-mediated thymocyte selection and maturation. Furthermore, these mice reveal attenuated effector T cell functions accompanied by defective TCR signaling. Collectively, the results indicate that IGSF4 plays a central role in T cell functioning by dual independent mechanisms, control of TCR signaling and control of T cell–APC interaction.


2004 ◽  
Vol 78 (8) ◽  
pp. 4207-4223 ◽  
Author(s):  
Neelam Sharma-Walia ◽  
Pramod P. Naranatt ◽  
Harinivas H. Krishnan ◽  
Ling Zeng ◽  
Bala Chandran

ABSTRACT Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) envelope glycoprotein gB possesses an RGD motif, interacts with α3β1 integrin, and uses it as one of the entry receptors. HHV-8 induces the integrin-dependent focal adhesion kinase (FAK), a critical step in the outside-in signaling pathways necessary for the subsequent phosphorylation of other cellular kinases, cytoskeletal rearrangements, and other functions. As an initial step toward deciphering the role of HHV-8 gB-integrin interaction in infection, signal pathways induced by gB were examined. A truncated form of gB without the transmembrane and carboxyl domains (gBΔTM), a gBΔTM mutant form (gBΔTM-RGA) with an RGD-to-RGA mutation, and inhibitors of cellular kinases were used. HHV-8 gBΔTM, but not gBΔTM-RGA, induced FAK phosphorylation in target cells, which was in part dependent on the presence of α3β1 integrin. FAK was critical for the subsequent phosphorylation of Src by gBΔTM, and Src induction was essential for the phosphorylation of phosphatidylinositol 3-kinase (PI-3K). HHV-8 gBΔTM-induced PI-3K was essential for the induction of RhoA and Cdc42 Rho GTPases that was accompanied by the cytoskeletal rearrangements. These gB-induced morphological changes were inhibited by the PI-3K inhibitors. Ezrin, one of the essential elements required to cross-link the actin cytoskeleton with the plasma membrane and to induce the morphological changes, was induced by the Rho GTPases. Inhibition of cellular tyrosine kinases by the brief treatment of cells with 4′,5,7-trihydroxyisoflavone (genistein) blocked the entry of HHV-8 into target cells. These findings suggest that, independently of other viral glycoproteins and via its RGD motif, HHV-8 gB induces integrin-dependent pre-existing FAK-Src-PI-3K-Rho GTPase kinases. Since these signal pathways play vital roles in host cell endocytosis and movement of particulate materials in the cytoplasm, the early stages of HHV-8 gB interaction with host cells may provide a very conducive environment for the successful infection of target cells.


2006 ◽  
Vol 26 (14) ◽  
pp. 5497-5508 ◽  
Author(s):  
Kazuhiro Ishiguro ◽  
Todd Green ◽  
Joseph Rapley ◽  
Heather Wachtel ◽  
Cosmas Giallourakis ◽  
...  

ABSTRACT CARMA1 is a central regulator of NF-κB activation in lymphocytes. CARMA1 and Bcl10 functionally interact and control NF-κB signaling downstream of the T-cell receptor (TCR). Computational analysis of expression neighborhoods of CARMA1-Bcl10MALT 1 for enrichment in kinases identified calmodulin-dependent protein kinase II (CaMKII) as an important component of this pathway. Here we report that Ca2+/CaMKII is redistributed to the immune synapse following T-cell activation and that CaMKII is critical for NF-κB activation induced by TCR stimulation. Furthermore, CaMKII enhances CARMA1-induced NF-κB activation. Moreover, we have shown that CaMKII phosphorylates CARMA1 on Ser109 and that the phosphorylation facilitates the interaction between CARMA1 and Bcl10. These results provide a novel function for CaMKII in TCR signaling and CARMA1-induced NF-κB activation.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2007 ◽  
Author(s):  
Mark Kirchhof ◽  
Luan Chau ◽  
Caitlin Lemke ◽  
Santosh Vardhana ◽  
Peter Darlington ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6473
Author(s):  
Anastasios Siokis ◽  
Philippe A. Robert ◽  
Michael Meyer-Hermann

Immunological synapse (IS) formation is a key event during antigen recognition by T cells. Recent experimental evidence suggests that the affinity between T cell receptors (TCRs) and antigen is actively modulated during the early steps of TCR signaling. In this work, we used an agent-based model to study possible mechanisms for affinity modulation during IS formation. We show that, without any specific active mechanism, the observed affinity between receptors and ligands evolves over time and depends on the density of ligands of the antigen peptide presented by major histocompatibility complexes (pMHC) and TCR molecules. A comparison between the presence or absence of TCR–pMHC centrally directed flow due to F-actin coupling suggests that centripetal transport is a potential mechanism for affinity modulation. The model further suggests that the time point of affinity measurement during immune synapse formation is critical. Finally, a mathematical model of F-actin foci formation incorporated in the agent-based model shows that TCR affinity can potentially be actively modulated by positive/negative feedback of the F-actin foci on the TCR-pMHC association rate kon.


2016 ◽  
Vol 215 (3) ◽  
pp. 383-399 ◽  
Author(s):  
Sricharan Murugesan ◽  
Jinsung Hong ◽  
Jason Yi ◽  
Dong Li ◽  
Jordan R. Beach ◽  
...  

Actin assembly and inward flow in the plane of the immunological synapse (IS) drives the centralization of T cell receptor microclusters (TCR MCs) and the integrin leukocyte functional antigen 1 (LFA-1). Using structured-illumination microscopy (SIM), we show that actin arcs populating the medial, lamella-like region of the IS arise from linear actin filaments generated by one or more formins present at the IS distal edge. After traversing the outer, Arp2/3-generated, lamellipodia-like region of the IS, these linear filaments are organized by myosin II into antiparallel concentric arcs. Three-dimensional SIM shows that active LFA-1 often aligns with arcs, whereas TCR MCs commonly reside between arcs, and total internal reflection fluorescence SIM shows TCR MCs being swept inward by arcs. Consistently, disrupting actin arc formation via formin inhibition results in less centralized TCR MCs, missegregated integrin clusters, decreased T–B cell adhesion, and diminished TCR signaling. Together, our results define the origin, organization, and functional significance of a major actomyosin contractile structure at the IS that directly propels TCR MC transport.


1987 ◽  
Vol 166 (1) ◽  
pp. 277-282 ◽  
Author(s):  
S Ferrini ◽  
C Bottino ◽  
R Biassoni ◽  
A Poggi ◽  
R P Sekaly ◽  
...  

Four clones were derived from human peripheral blood T lymphocytes from which CD4+ and CD8+ cells had been removed by treatment with specific mAbs and complement. All expressed the CD2+, 3+, 4-, 8-, T44- phenotype, and did not react with the WT31 mAb, which is specific for a framework determinant of the CD3-associated alpha/beta heterodimer which serves as receptor for antigen on most human T lymphocytes. Surface iodination followed by crosslinking with dithiobis-succinimidyl propionate (DSP) and immunoprecipitation with anti-CD3 mAbs indicated that, in all four clones, the CD3-associated molecules consisted of a major 45 kD band and a minor band of 43 kD. Northern blot analysis showed that mRNA for the gamma chain was expressed at high levels, whereas mRNA for the alpha chain was missing; beta chain mRNA was present in a defective form (1 kb instead of 1.3 kb). These data support the concept that these clones may express, in association with CD3, the molecular product of the T cell receptor gamma genes instead of the typical alpha/beta heterodimer. CD3+, WT31- clones lysed the NK-sensitive K562 target cells and produced IL-2 upon stimulation with PHA. In addition, they released IL-2 after triggering with soluble anti-CD3 mAbs or with an appropriate combination of anti-CD2 mAbs (in the presence of adherent cells). When CD3+, WT31- clones were incubated with an anti-CD3 producing hybridoma as triggering target, the latter was efficiently lysed. Target cell lysis also occurred when a suitable combination of anti-CD2 mAbs-producing hybridomas was used. Therefore, CD3+, WT31- cells appear to use two pathways of cell activation that function also in conventional CD3+, WT31+ T cells, but they lack a third putative pathway initiated by T44 surface molecules.


Sign in / Sign up

Export Citation Format

Share Document