First-Order Nonlinear Equations and Their Applications

Author(s):  
Lokenath Debnath
2016 ◽  
Vol 32 (5) ◽  
pp. 539-554 ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
A. Shahabodini

AbstractIn this paper, a non-classical plate model capturing the size effect is developed to study the forced vibration of functionally graded (FG) microplates subjected to a harmonic excitation transverse force. To this, the modified couple stress theory (MCST) is incorporated into the first-order shear deformation plate theory (FSDPT) to account for the size effect through one length scale parameter, only. Strong form of nonlinear governing equations and associated boundary conditions are obtained using Hamilton's principle. The solution process is implemented on two domains. The generalized differential quadrature (GDQ) method is first employed to discretize the governing equations on the space domain. A Galerkin-based scheme is then applied to extract a reduced set of the nonlinear equations of Duffing-type. On the second domain, through a time differentiation matrix operator, the set of ordinary differential equations are transformed into the discrete form on time domain. Eventually, a system of the parameterized nonlinear equations is acquired and solved via the pseudo-arc length continuation method. The frequency response curve of the microplate is sketched and the effects of various material and geometrical parameters on it are evaluated.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 179
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros

Our aim in this article is to suggest an extended local convergence study for a class of multi-step solvers for nonlinear equations valued in a Banach space. In comparison to previous studies, where they adopt hypotheses up to 7th Fŕechet-derivative, we restrict the hypotheses to only first-order derivative of considered operators and Lipschitz constants. Hence, we enlarge the suitability region of these solvers along with computable radii of convergence. In the end of this study, we choose a variety of numerical problems which illustrate that our works are applicable but not earlier to solve nonlinear problems.


2011 ◽  
Vol 25 (14) ◽  
pp. 1931-1939 ◽  
Author(s):  
LIANG-MA SHI ◽  
LING-FENG ZHANG ◽  
HAO MENG ◽  
HONG-WEI ZHAO ◽  
SHI-PING ZHOU

A method for constructing the solutions of nonlinear evolution equations by using the Weierstrass elliptic function and its first-order derivative was presented. This technique was then applied to Burgers and Klein–Gordon equations which showed its efficiency and validality for exactly some solving nonlinear evolution equations.


1977 ◽  
Vol 30 (1) ◽  
pp. 1-11 ◽  
Author(s):  
H. Brézis ◽  
L. Nirenberg

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Grégory Antoni

This study concerns the development of a straightforward numerical technique associated with Classical Newton’s Method for providing a more accurate approximate solution of scalar nonlinear equations. The proposed procedure is based on some practical geometric rules and requires the knowledge of the local slope of the curve representing the considered nonlinear function. Therefore, this new technique uses, only as input data, the first-order derivative of the nonlinear equation in question. The relevance of this numerical procedure is tested, evaluated, and discussed through some examples.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
F. Soleymani

This paper contributes a very general class of two-point iterative methods without memory for solving nonlinear equations. The class of methods is developed using weight function approach. Per iteration, each method of the class includes two evaluations of the function and one of its first-order derivative. The analytical study of the main theorem is presented in detail to show the fourth order of convergence. Furthermore, it is discussed that many of the existing fourth-order methods without memory are members from this developed class. Finally, numerical examples are taken into account to manifest the accuracy of the derived methods.


2019 ◽  
Vol 17 (01) ◽  
pp. 1843005 ◽  
Author(s):  
Rahmatjan Imin ◽  
Ahmatjan Iminjan

In this paper, based on the basic principle of the SPH method’s kernel approximation, a new kernel approximation was constructed to compute first-order derivative through Taylor series expansion. Derivative in Newton’s method was replaced to propose a new SPH iterative method for solving nonlinear equations. The advantage of this method is that it does not require any evaluation of derivatives, which overcame the shortcoming of Newton’s method. Quadratic convergence of new method was proved and a variety of numerical examples were given to illustrate that the method has the same computational efficiency as Newton’s method.


Sign in / Sign up

Export Citation Format

Share Document