Origin of Oxygenic Photosynthesis from Anoxygenic Type I and Type II Reaction Centers

2014 ◽  
pp. 433-450
Author(s):  
John F. Allen
Author(s):  
Scott O. Rogers

AbstractBacteria are divided primarily into monoderms (with one cell membrane, and usually Gram-positive, due to a thick peptidoglycan layer) and diderms (with two cell membranes, and mostly Gram-negative, due to a thin peptidoglycan layer sandwiched between the two membranes). Photosynthetic species are spread among the taxonomic groups, some having type I reaction centers (RCI in monoderm phylum Firmicutes; and diderm phyla Acidobacteria and Chlorobi), others with type II reaction centers (RCII in monoderm phylum Chloroflexi; and diderm taxa Gemmatimonadetes, and alpha-, beta-, and gamma-Proteobacteria), and some containing both (RCI and RCII, only in diderm phylum Cyanobacteria). In most bacterial phylograms, photosystem types and diderm taxa are polyphyletic. A more parsimonious arrangement, which is supported by photosystem evolution, as well as additional sets of molecular characters, suggests that endosymbiotic events resulted in the formation of the diderms. In the model presented, monoderms readily form a monophyletic group, while diderms are produced by at least two endosymbiotic events, followed by additional evolutionary changes.


2021 ◽  
Author(s):  
Tasuku Hamaguchi ◽  
Keisuke Kawakami ◽  
Kyoko Shinzawa-Itoh ◽  
Natsuko Inoue-Kashino ◽  
Shigeru Itoh ◽  
...  

Abstract Acaryochloris marina is one of the cyanobacteria that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of the photosystem I reaction center of A. marina determined by cryo-electron microscopy at 2.5 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments different from other type I reaction centers. The paired chlorophyll, so-called special pair, of P740 is a dimer of chlorophyll d/d′ and the primary electron acceptor is pheophytin a, a metal-less chlorin different from the chlorophyll a common to all other type I reaction centers. Here we show the architecture of the photosystem I reaction center is composed of 11 subunits and identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.


iScience ◽  
2021 ◽  
pp. 102719
Author(s):  
Michael Gorka ◽  
Philip Charles ◽  
Vidmantas Kalendra ◽  
Amgalanbaatar Baldansuren ◽  
K.V. Lakshmi ◽  
...  

Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-525-C5-528 ◽  
Author(s):  
K. J. MOORE ◽  
P. DAWSON ◽  
C. T. FOXON
Keyword(s):  
Type I ◽  
Type Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document