Analysis and Research of Acoustic Emission Signal of Rolling Element Bearing Fatigue

Author(s):  
Hualong Jia ◽  
Xing Wu ◽  
Xiaoqin Liu ◽  
Chang Liu ◽  
Zhihai Wang
2011 ◽  
Vol 199-200 ◽  
pp. 1020-1023 ◽  
Author(s):  
Hua Qing Wang ◽  
Yong Wei Guo ◽  
Jian Feng Yang ◽  
Liu Yang Song ◽  
Jia Pan ◽  
...  

The fault of a bearing may cause the breakdown of a rotating machine, leading to serious consequences. A rolling element bearing is an important part of, and is widely used in rotating machinery. Therefore, fault diagnosis of rolling bearings is important for guaranteeing production efficiency and plant safety. Although many studies have been carried out with the goal of achieving fault diagnosis of a bearing, most of these works were studied for rotating machinery with a high rotating speed rather than with a low rotating speed. Fault diagnosis for bearings under a low rotating speed, is more difficult than under a high rotating speed. Because bearing faults signal is very weak under a low rotating speed. This work acquires vibration and acoustic emission signals from the rolling bearing under low speed respectively, and analyzes the both kinds of signals in time domain and frequency domain for diagnosing the typical bearing faults contrastively. This paper also discussed the advantages using the acoustic emission signal for fault diagnosis of rolling speed bearing. From the results of analysis and experiment we can find the effectiveness of acoustic emission signal is better than vibration signal for fault diagnosis of a bearing under the low speed.


Author(s):  
Fazhong Li ◽  
Zengshui He ◽  
Lin Zhang ◽  
Anbo Ming ◽  
Yongsheng Yang

The accurate description of acoustic emission signals produced by the localized fault of a rolling element bearing plays an important role in its feature extraction and analysis. This paper analyzes the excitation mechanisms and develops the analytical model of acoustic emission signals produced when the rolling element bearing passes across the localized fault on the inner or outer race. Based on the analytical model, the spectral characteristics are discussed substantially. Simulations and experiments are carried out to validate the efficacy of the model developed in the paper. The experimental results show that the response signal thus produced has two parts. The first one is produced by the entry of the rolling element bearing, while the other is produced by the departure of the rolling element bearing. The energy of both parts is concentrated around the resonance frequency of the acoustic emission transducer. Generally, the interval of adjacent acoustic emission events is not equivalent to each other and the corresponding spectrum is continuous in the high frequency band.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Matti Savolainen ◽  
Arto Lehtovaara

This paper presents the trends of damage detection parameters over the lifetime of a rolling element bearing. In the experimental part, a series of bearing tests was performed using the twin-disc test device, until the monitored bearing was severely worn. This was followed by the analysis of measured acceleration and acoustic emission data in a constant-load condition, but also as loaded with impact-type loading. The results showed that traditionally used parameters, such as kurtosis and RMS, can indicate whether the bearing is damaged or not in a non-impact load condition. However, especially under impact-loading, the parameters based on acoustic emission data showed good performance and enabled monitoring of progress of the bearing damage.


2011 ◽  
Vol 199-200 ◽  
pp. 895-898
Author(s):  
Hong Fang Yuan ◽  
Peng Wang ◽  
Hua Qing Wang

Because AE (Acoustic Emission) signals in bearing fault monitoring unavoidably mixed various noise which lead to wide band characteristics, in this paper, the collected AE signals are pre-processed by EMD (Empirical Mode Decomposition) algorithm to extract useful information in the concerned frequency range, after that, power spectrum is used to locating analysis and pattern recognition. Experiment show that this method could improve the detection accuracy in rolling element bearing fault diagnosis.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
M. Elforjani ◽  
D. Mba

The monitoring and diagnosis of rolling element bearings with the high frequency acoustic emission (AE) technology has been ongoing since the late 1960s. This paper demonstrates the use of AE measurements to detect, locate, and monitor natural defect initiation and propagation in a conventional rolling element bearing. To facilitate the investigation a special purpose test rig was built to allow for accelerated natural degradation of a bearing race. It is concluded that subsurface initiation and subsequent crack propagation can be detected with the AE technology. The paper also presents comparative results between AE and vibration diagnosis.


2013 ◽  
Vol 569-570 ◽  
pp. 497-504 ◽  
Author(s):  
An Bo Ming ◽  
Zhao Ye Qin ◽  
Wei Zhang ◽  
Fu Lei Chu

Spalling of the races or rolling elements is one of the most common faults in rolling element bearings. Exact estimation of the spall size is helpful to the life prediction for rolling element bearings. In this paper, the dual-impulsive phenomenon in the response of a spalled rolling element bearing is investigated experimentally, where the acoustic emission signals are utilized. A new method is proposed to estimate the spall size by extracting the envelope of harmonics of the ball passing frequency on the outer race from the squared envelope spectrum. Compared with the cepstrum analysis, the proposed procedure shows more powerful anti-noise ability in the fault size evaluation.


Sign in / Sign up

Export Citation Format

Share Document