Development of Microfluidic Devices for the Manipulation of Neuronal Synapses

Author(s):  
Anika Jain ◽  
Martha U. Gillette
2016 ◽  
Vol 136 (6) ◽  
pp. 244-249
Author(s):  
Takahiro Watanabe ◽  
Fumihiro Sassa ◽  
Yoshitaka Yoshizumi ◽  
Hiroaki Suzuki

2007 ◽  
Vol 148 (15) ◽  
pp. 697-702 ◽  
Author(s):  
Marianna Murányi ◽  
Zsombor Lacza

It is now known that astrocytes are not merely supporting cells but they also play an important role in neuronal funcions. Astrocytes tightly ensheat neuronal synapses and regulate the excitation of neurons by uptaking neurotransmitters; reglulate the cerebral blood flow, cerebral fluid volume and extracellular concentrations of ions. They also supply fuel in the form of lactate and provide free radical scavangers such as glutathione for active neurons. These facts indicate that impaired function of astrocytes may lead to neuronal dysfunction. After brain injury (stroke, trauma or tumors) astrocytes are swollen and release active molecules such as glutamate or free radicals resulting in neuronal dysfunction. Thus, investigation of the molecular mechanisms of astrocyte function may reveal novel targets for the development of therapeutic tools in neuronal diseases.


2020 ◽  
Vol 27 (37) ◽  
pp. 6384-6406 ◽  
Author(s):  
Zuo Zhang ◽  
Hongli Zhou ◽  
Jiyin Zhou

NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.


2020 ◽  
Vol 15 (1) ◽  
pp. 63-68
Author(s):  
Yu. V. Ulianova ◽  
A. M. Popov ◽  
N. P. Babichenko ◽  
K. V. Gorin ◽  
Ya. E. Sergeeva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document