Magnetic Flux Emergence Along the Solar Cycle

Author(s):  
B. Schmieder ◽  
V. Archontis ◽  
E. Pariat
1977 ◽  
Vol 214 ◽  
pp. L141 ◽  
Author(s):  
J. M. Davis ◽  
L. Golub ◽  
A. S. Kreiger

2020 ◽  
Vol 636 ◽  
pp. A7
Author(s):  
R. H. Cameron ◽  
M. Schüssler

The polarity of the toroidal magnetic field in the solar convection zone periodically reverses in the course of the 11/22-year solar cycle. Among the various processes that contribute to the removal of “old-polarity” toroidal magnetic flux is the emergence of flux loops forming bipolar regions at the solar surface. We quantify the loss of subsurface net toroidal flux by this process. To this end, we determine the contribution of an individual emerging bipolar loop and show that it is unaffected by surface flux transport after emergence. Together with the linearity of the diffusion process this means that the total flux loss can be obtained by adding the contributions of all emerging bipolar magnetic regions. The resulting total loss rate of net toroidal flux amounts to 1.3 × 1015 Mx s−1 during activity maxima and 6.1 × 1014 Mx s−1 during activity minima, to which ephemeral regions contribute about 90 and 97%, respectively. This rate is consistent with the observationally inferred loss rate of toroidal flux into interplanetary space and corresponds to a decay time of the subsurface toroidal flux of about 12 years, also consistent with a simple estimate based on turbulent diffusivity. Consequently, toroidal flux loss by flux emergence is a relevant contribution to the budget of net toroidal flux in the solar convection zone. The consistency between the toroidal flux loss rate due to flux emergence and what is expected from turbulent diffusion, and the similarity between the corresponding decay time and the length of the solar cycle are important constraints for understanding the solar cycle and the Sun’s internal dynamics.


2014 ◽  
Vol 186 (1-4) ◽  
pp. 227-250 ◽  
Author(s):  
B. Schmieder ◽  
V. Archontis ◽  
E. Pariat

2009 ◽  
Vol 5 (S264) ◽  
pp. 251-256
Author(s):  
J. X. Wang ◽  
Y. Z. Zhang ◽  
G. P. Zhou ◽  
Y. Y. Wen ◽  
J. Jiang

AbstractThere appear indications of more global activity on the Sun which is larger, much beyond the scale of solar active regions (ARs). These indications include formation, flaring and eruption of the trans-equatorial loops seen in EUV and X-rays, formation and eruption of trans-equatorial filaments, global magnetic connectivity in EUV dimming associated with halo-coronal mass ejections, wide spread of radio burst sources in meter wavelength in the solar corona, and quasi-simultaneous magnetic flux emergence in both hemispheres seen during some major solar events. With examples of a few major events in the last solar cycle we discuss the possibility that there is large or global-scale activity on the Sun. Its spatial scale is many times larger than that of AR and temporal scale is over 10 hours. The exemplified trans-equatorial loops are anchored in ARs and their activity is temporally associated with flares in ARs too. In some sense the flares in ARs appear either as a part of or a precursor of the more global activity. It is likely that the combination of the flares in ARs and the associated global activity is responsible to the major solar-terrestrial events. More efforts in understanding the global activity are undertaken.


2019 ◽  
Vol 623 ◽  
pp. A176 ◽  
Author(s):  
L. P. Chitta ◽  
A. R. C. Sukarmadji ◽  
L. Rouppe van der Voort ◽  
H. Peter

Context. Densely packed coronal loops are rooted in photospheric plages in the vicinity of active regions on the Sun. The photospheric magnetic features underlying these plage areas are patches of mostly unidirectional magnetic field extending several arcsec on the solar surface. Aims. We aim to explore the transient nature of the magnetic field, its mixed-polarity characteristics, and the associated energetics in the active region plage using high spatial resolution observations and numerical simulations. Methods. We used photospheric Fe I 6173 Å spectropolarimetric observations of a decaying active region obtained from the Swedish 1-m Solar Telescope (SST). These data were inverted to retrieve the photospheric magnetic field underlying the plage as identified in the extreme-ultraviolet emission maps obtained from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To obtain better insight into the evolution of extended unidirectional magnetic field patches on the Sun, we performed 3D radiation magnetohydrodynamic simulations of magnetoconvection using the MURaM code. Results. The observations show transient magnetic flux emergence and cancellation events within the extended predominantly unipolar patch on timescales of a few 100 s and on spatial scales comparable to granules. These transient events occur at the footpoints of active region plage loops. In one case the coronal response at the footpoints of these loops is clearly associated with the underlying transient. The numerical simulations also reveal similar magnetic flux emergence and cancellation events that extend to even smaller spatial and temporal scales. Individual simulated transient events transfer an energy flux in excess of 1 MW m−2 through the photosphere. Conclusions. We suggest that the magnetic transients could play an important role in the energetics of active region plage. Both in observations and simulations, the opposite-polarity magnetic field brought up by transient flux emergence cancels with the surrounding plage field. Magnetic reconnection associated with such transient events likely conduits magnetic energy to power the overlying chromosphere and coronal loops.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 586
Author(s):  
Che-Jui Chang ◽  
Jean-Fu Kiang

Strong flares and coronal mass ejections (CMEs), launched from δ-sunspots, are the most catastrophic energy-releasing events in the solar system. The formations of δ-sunspots and relevant polarity inversion lines (PILs) are crucial for the understanding of flare eruptions and CMEs. In this work, the kink-stable, spot-spot-type δ-sunspots induced by flux emergence are simulated, under different subphotospheric initial conditions of magnetic field strength, radius, twist, and depth. The time evolution of various plasma variables of the δ-sunspots are simulated and compared with the observation data, including magnetic bipolar structures, relevant PILs, and temperature. The simulation results show that magnetic polarities display switchbacks at a certain stage and then split into numerous fragments. The simulated fragmentation phenomenon in some δ-sunspots may provide leads for future observations in the field.


2017 ◽  
Vol 842 (1) ◽  
pp. 3 ◽  
Author(s):  
A. A. Norton ◽  
E. H. Jones ◽  
M. G. Linton ◽  
J. E. Leake

Scholarpedia ◽  
2007 ◽  
Vol 2 (12) ◽  
pp. 4335 ◽  
Author(s):  
Brigitte Schmieder ◽  
Etienne Pariat
Keyword(s):  

2020 ◽  
Vol 10 ◽  
pp. 62
Author(s):  
Melinda Nagy ◽  
Alexandre Lemerle ◽  
Paul Charbonneau

We examine the impact of surface inflows into activity belts on the operation of solar cycle models based on the Babcock–Leighton mechanism of poloidal field regeneration. Towards this end we introduce in the solar cycle model of Lemerle & Charbonneau (2017. ApJ 834: 133) a magnetic flux-dependent variation of the surface meridional flow based on the axisymmetric inflow parameterization developped by Jiang et al. (2010. ApJ 717: 597). The inflow dependence on emerging magnetic flux thus introduces a bona fide nonlinear backreaction mechanism in the dynamo loop. For solar-like inflow speeds, our simulation results indicate a decrease of 10–20% in the strength of the global dipole building up at the end of an activity cycle, in agreement with earlier simulations based on linear surface flux transport models. Our simulations also indicate a significant stabilizing effect on cycle characteristics, in that individual cycle amplitudes in simulations including inflows show less scatter about their mean than in the absence of inflows. Our simulations also demonstrate an enhancement of cross-hemispheric coupling, leading to a significant decrease in hemispheric cycle amplitude asymmetries and temporal lag in hemispheric cycle onset. Analysis of temporally extended simulations also indicate that the presence of inflows increases the probability of cycle shutdown following an unfavorable sequence of emergence events. This results ultimately from the lower threshold nonlinearity built into our solar cycle model, and presumably operating in the sun as well.


Sign in / Sign up

Export Citation Format

Share Document