polarity inversion
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 50)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 924 (1) ◽  
pp. 17
Author(s):  
D. Baker ◽  
L. M. Green ◽  
D. H. Brooks ◽  
P. Démoulin ◽  
L. van Driel-Gesztelyi ◽  
...  

Abstract Magnetic flux ropes are bundles of twisted magnetic field enveloping a central axis. They harbor free magnetic energy and can be progenitors of coronal mass ejections (CMEs). However, identifying flux ropes on the Sun can be challenging. One of the key coronal observables that has been shown to indicate the presence of a flux rope is a peculiar bright coronal structure called a sigmoid. In this work, we show Hinode EUV Imaging Spectrometer observations of sigmoidal active region (AR) 10977. We analyze the coronal plasma composition in the AR and its evolution as a sigmoid (flux rope) forms and erupts as a CME. Plasma with photospheric composition was observed in coronal loops close to the main polarity inversion line during episodes of significant flux cancellation, suggestive of the injection of photospheric plasma into these loops driven by photospheric flux cancellation. Concurrently, the increasingly sheared core field contained plasma with coronal composition. As flux cancellation decreased and a sigmoid/flux rope formed, the plasma evolved to an intermediate composition in between photospheric and typical AR coronal compositions. Finally, the flux rope contained predominantly photospheric plasma during and after a failed eruption preceding the CME. Hence, plasma composition observations of AR 10977 strongly support models of flux rope formation by photospheric flux cancellation forcing magnetic reconnection first at the photospheric level then at the coronal level.


2021 ◽  
Author(s):  
Mar Yebra ◽  
Ole Jensen ◽  
Lukas Kunz ◽  
Stephan Moratti ◽  
Nikolai Axmacher ◽  
...  

The hippocampus is implicated in novelty detection, thought to be important for regulating entry of information into long-term memory. Whether electrophysiological responses to novelty differ along the human hippocampal long axis is currently unknown. By recording from electrodes implanted longitudinally in the hippocampus of epilepsy patients, here we show a gradual increase of theta frequency oscillatory power from anterior to posterior in response to unexpected stimuli, superimposed on novelty responses common to all long axis portions. Intracranial event-related potentials (iERPs) were larger for unexpected vs. expected stimuli and demonstrated a polarity inversion between the hippocampal head (HH) and body (HB). We observed stronger theta coherence between HH and hippocampal tail (HT) than between HB and HT, similarly for expected and unexpected stimuli. This was accompanied by theta and alpha traveling waves with surprisingly variable direction of travel characterized by a ~180 degree phase lag between hippocampal poles. Interestingly, this phase lag showed a pronounced phase offset between anterior and middle (HH-HB) hippocampal portions coinciding anatomically with a drop in theta coherence and the novelty iERP polarity inversion. Our findings indicate common response properties along the hippocampal long axis to unexpected stimuli, as well as a multifaceted, non-uniform engagement along the long axis for novelty processing.


Author(s):  
Justin Neubauer ◽  
Zakai Olsen ◽  
Zachary Frank ◽  
Taeseon Hwang ◽  
Kwang Jin Kim

Abstract Polyvinyl chloride (PVC) gels are soft electroactive polymers being researched for soft robotic applications. Sensing properties of these electroactive polymers have not been investigated in detail in regard to fundamental mechanoelectrical transduction behavior, but this smart material has been shown to exhibit a detectable response to external stimuli. This study shows PVC gels to be an extremely sensitive material when undergoing mechanoelectrical transduction and explores some response dependencies and proposes a theoretical framework for mechanoelectrical transduction within the gel. The work presented here also uncovers a very interesting phenomena under extremely low compressive loads during the initial contact with the gel. This phenomenon is attributed to a surface tension creeping motion onto the loading surface with an accompanying polarity inversion in the sensing signal relative to fully loaded gels in compression. Experimental work on hysteresis was also completed showing very little memory in steady state mechanoelectrical response to repeated stepped loading cycles. This study demonstrates the mechanoelectric ability of PVC gels to perform in sensing experiments and acts as a fundamental framework to further broaden the applications of PVC gel sensors.


Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
B. A. Emery ◽  
D. F. Webb ◽  
S. E. Gibson ◽  
I. M. Hewins ◽  
R. H. McFadden ◽  
...  

2021 ◽  
Vol 915 (1) ◽  
pp. 38
Author(s):  
Domenico Cicogna ◽  
Francesco Berrilli ◽  
Daniele Calchetti ◽  
Dario Del Moro ◽  
Luca Giovannelli ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4067
Author(s):  
Vitaly Leonidovich Malevich ◽  
Pavel Aliaksandravich Ziaziulia ◽  
Ričardas Norkus ◽  
Vaidas Pačebutas ◽  
Ignas Nevinskas ◽  
...  

Terahertz radiation pulses emitted after exciting semiconductor heterostructures by femtosecond optical pulses were used to determine the electron energy band offsets between different constituent materials. It has been shown that when the photon energy is sufficient enough to excite electrons in the narrower bandgap layer with an energy greater than the conduction band offset, the terahertz pulse changes its polarity. Theoretical analysis performed both analytically and by numerical Monte Carlo simulation has shown that the polarity inversion is caused by the electrons that are excited in the narrow bandgap layer with energies sufficient to surmount the band offset with the wide bandgap substrate. This effect is used to evaluate the energy band offsets in GaInAs/InP and GaInAsBi/InP heterostructures.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 407
Author(s):  
Yuanzhen Zheng ◽  
Dudu Chen ◽  
Fei Sun ◽  
Kuanxiang Xu ◽  
Tingfeng Ma ◽  
...  

In this work, lateral-field-excitation (LFE) piezoelectric sensors based on polarity inversion layer are designed and fabricated, then frequency stabilities and sensitivities on electric property changes of liquids are tested. Because the polarity inversion layer can suppress the spurious modes, the stabilities of the LFE devices with a polarity inversion layer are obviously better than that of LFE devices with no polarity inversion layer. On the changes of liquid conductivity and permittivity, the sensitivities of the LFE devices with a polarity inversion layer are 2.4 times and 2.1 times higher than that of LFE devices with no polarity inversion layer, respectively. The polarity inversion layer of the lithium niobate crystal plate can be realized conveniently by heat treatment, therefore, the technology of the polarity inversion layer can play an important role in improving the sensing performances of LFE sensors.


Sign in / Sign up

Export Citation Format

Share Document