T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse

Author(s):  
Maria K. Traver ◽  
Suman Paul ◽  
Brian C. Schaefer
2005 ◽  
Vol 102 (8) ◽  
pp. 2904-2909 ◽  
Author(s):  
B. Purtic ◽  
L. A. Pitcher ◽  
N. S. C. van Oers ◽  
C. Wulfing

2007 ◽  
Vol 104 (51) ◽  
pp. 20296-20301 ◽  
Author(s):  
Y. Kaizuka ◽  
A. D. Douglass ◽  
R. Varma ◽  
M. L. Dustin ◽  
R. D. Vale

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1748-1748
Author(s):  
Zaid Al-Kadhimi ◽  
Lisa Marie Serrano ◽  
Simon Olivares ◽  
Sergio Gonzalez ◽  
Timothy Pfeiffer ◽  
...  

Abstract The safety and feasibility of adoptive immunotherapy using ex vivo-expanded differentiated human effector T cells that express tumor-specific chimeric receptors are being evaluated in clinical trials. Typically, these T cells are CCR7neg and bear a T-cell receptor of unknown specificity. To improve the therapeutic potential of genetically engineered T cells in general, and CD19-specific T cells in particular, strategies are needed to improve their ability traffic to sites of residual/macroscopic disease where infused T cells can be specifically activated for proliferation, cytokine secretion, and tumor-lysis. To accomplish these goals we have generated a selection process that uses genetically modified T cells, expressing influenza A matrix protein 1 (MP1) or CMV pp65, to act as antigen presenting cells (T-APC) in order to expand autologous viral-specific T cells in vitro and in vivo. The viral-specific effector T cells can then be genetically modified with a CD19-specific chimeric immunoreceptor (CD19R), which recognizes CD19 on malignant B cells, independent of MHC. By using these viral-specific T cells as a platform for the introduction of CD19R, we now demonstrate that bi-specific T cells express the chemokine receptor CCR7, which is implicated in the trafficking of T cells to lymph nodes. We demonstrate that this chemokine receptor functions to directionally chemotax the genetically modified bi-specific T-cells along concentration gradients of CCL19 or CCL21. We further demonstrate that both the endogenous and introduced chimeric immunoreceptor continue to function in CCR7+ bi-specific T cells. Indeed, the bi-specific T cells are capable of augmented cytokine production and proliferation upon docking with both CD19 and MP1 antigens, compared with these same T cells interacting with either CD19 or MP1 alone. This enhanced activation is an explanation for the enhanced in vivo anti-tumor activity demonstrated by bi-specific T-cells when stimulated with MP1+ T-APC in treating CD19+ lymphoma in NOD/scid mice. An advantage of this methodology is that the CCR7+ bi-specific T cells and T-APC can be genetically modified and expanded in compliance with current good manufacturing practice (cGMP) for 2nd generation Phase I/II clinical trials to test their ability to traffic to sites of lymphoma providing potent regional/local T-cell activation. Legend: (A) CCR7+ viral- and CD19-bi-specific T cells migrate along recombinant CCL19 and CCL21 concentration gradients, whereas CCR7neg CD19-specific T cells do not. (B) Stimulation of both introduced chimeric immunoreceptor and endogenous T-cell receptor on CD19- and MP1- bi-specific T-cells, using artificial APC, results in augmented cytokine production. Figure Figure


2006 ◽  
Vol 193 (6) ◽  
pp. 879-887 ◽  
Author(s):  
Rajendra Pahwa ◽  
Thomas W. McCloskey ◽  
Olga C. Aroniadis ◽  
Natasa Strbo ◽  
Subramaniam Krishnan ◽  
...  

Cell Reports ◽  
2018 ◽  
Vol 22 (2) ◽  
pp. 340-349 ◽  
Author(s):  
Viveka Mayya ◽  
Edward Judokusumo ◽  
Enas Abu Shah ◽  
Christopher G. Peel ◽  
Willie Neiswanger ◽  
...  

Author(s):  
E. Ammirati ◽  
A.C. Vermi ◽  
D. Cianflone ◽  
M. Banfi ◽  
C. Foglieni ◽  
...  

1988 ◽  
Vol 168 (3) ◽  
pp. 1145-1156 ◽  
Author(s):  
B E Bierer ◽  
A Peterson ◽  
J C Gorga ◽  
S H Herrmann ◽  
S J Burakoff

T cells may be activated either by the antigen-specific T cell receptor (TCR)-CD3 complex or the cell surface receptor CD2. A natural ligand for CD2 has been found to be lymphocyte function-associated antigen 3 (LFA-3), a widely distributed cell surface glycoprotein. To investigate the interaction of these two pathways, we have expressed the cDNA encoding the human CD2 molecule in a murine T cell hybridoma that produces IL-2 in response to HLA-DR antigens. Expression of the CD2 molecule markedly enhances IL-2 production in response to LFA-3+ antigen-bearing stimulator cells, and this stimulation is inhibited by anti-CD2 and anti-LFA-3 mAb. To further define the role of LFA-3 in antigen-dependent T cell activation, we have studied the ability of the purified ligands of CD2 and the TCR to stimulate the hybridoma. Neither liposomes containing purified HLA-DR antigens nor liposomes containing purified LFA-3 were able to stimulate the parent or the CD2+ hybridoma. However, liposomes containing both purified LFA-3 and HLA-DR, the physiological ligands for CD2 and the TCR, respectively, stimulate IL-2 production by the CD2+ but not the parent hybridoma, suggesting that complementary interactions between the TCR-CD3 complex and the CD2 pathway may regulate lymphocyte activation. To determine whether the CD2/LFA-3 interaction participates in cell-cell adhesion and provides an activation signal, we have constructed a cytoplasmic deletion mutant of CD2, CD2 delta B, in which the COOH-terminal 100 amino acids of CD2 have been replaced with a serine. Hybridomas expressing the CD2 delta B molecule were examined. Deletion of the cytoplasmic domain of CD2 did not alter binding of LFA-3 but eliminated the ability of CD2 to increase the response of the hybridoma to liposomes containing both HLA-DR and LFA-3, demonstrating that adhesion of LFA-3 to CD2 alone was insufficient for activation, and that the cytoplasmic domain was required for LFA-3 stimulation through the CD2 molecule. T cells may be activated by purified LFA-3 binding to CD2 and the TCR interacting with its ligand, and these signals appear to be synergistic for the T cell. These results suggest that the CD2/LFA-3 interaction not only plays a role in cell-cell adhesion but provides a stimulatory signal for T cell activation.


Sign in / Sign up

Export Citation Format

Share Document