chimeric immunoreceptor
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 1)

Immunotherapy ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1043-1055 ◽  
Author(s):  
Bing Chen ◽  
Min Zhou ◽  
Hai Zhang ◽  
Chen Wang ◽  
Xiaocui Hu ◽  
...  

Aim: Chimeric antigen receptor-engineered T (CAR-T) cells have gained huge success in treating hematological malignancies, yet the CD3ζ-based CAR-T therapies have not shown comparable clinical benefits in solid tumors. We designed an alternative chimeric immunoreceptor in which a single-chain variable fragment was fused to the transmembrane-cytoplasmic domains of triggering receptor expressed on myeloid (TREM1), which may show potent antitumor activity. Methods: To generate TREM1/DNAX activation protein of 12 kDa (Dap12)-based CAR-T cells, TREM1 along with DAP12 was transduced into T cells. Results: TREM1/Dap12-based CAR-T cells showed more lysis in vitro and a similar antitumor effect in mouse models compared with CD19BBζ CAR-T cells. Conclusion: In this study, we designed a TREM1/Dap12-based CAR, which was not reported previously and demonstrated that TREM1/Dap12-based CAR-T cells had potent antitumor activity in vitro and in vivo.


2010 ◽  
Author(s):  
David M. Barrett ◽  
Carmine Carpenito ◽  
Yang Bing Zhao ◽  
Michael Kalos ◽  
Carl H. June ◽  
...  

2010 ◽  
Vol 84 (8) ◽  
pp. 4083-4088 ◽  
Author(s):  
Florian Full ◽  
Manfred Lehner ◽  
Veronika Thonn ◽  
Gabriel Goetz ◽  
Brigitte Scholz ◽  
...  

ABSTRACT Cytomegalovirus (CMV) infection in patients receiving hematopoietic stem cell transplants (HSCT) is associated with morbidity and mortality. Adoptive T cell immunotherapy has been used to treat viral reactivation but is hardly feasible in high-risk constellations of CMV-positive HSCT patients and CMV-negative stem cell donors. We endowed human effector T cells with a chimeric immunoreceptor (cIR) directed against CMV glycoprotein B. These cIR-engineered primary T cells mediated antiviral effector functions such as cytokine production and cytolysis. This first description of cIR-redirected CMV-specific T cells opens up a new perspective for HLA-independent immunotherapy of CMV infection in high-risk patients.


2006 ◽  
Vol 97 (9) ◽  
pp. 920-927 ◽  
Author(s):  
Takeshi Sasaki ◽  
Hiroaki Ikeda ◽  
Masayoshi Sato ◽  
Takayuki Ohkuri ◽  
Hiroyuki Abe ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1748-1748
Author(s):  
Zaid Al-Kadhimi ◽  
Lisa Marie Serrano ◽  
Simon Olivares ◽  
Sergio Gonzalez ◽  
Timothy Pfeiffer ◽  
...  

Abstract The safety and feasibility of adoptive immunotherapy using ex vivo-expanded differentiated human effector T cells that express tumor-specific chimeric receptors are being evaluated in clinical trials. Typically, these T cells are CCR7neg and bear a T-cell receptor of unknown specificity. To improve the therapeutic potential of genetically engineered T cells in general, and CD19-specific T cells in particular, strategies are needed to improve their ability traffic to sites of residual/macroscopic disease where infused T cells can be specifically activated for proliferation, cytokine secretion, and tumor-lysis. To accomplish these goals we have generated a selection process that uses genetically modified T cells, expressing influenza A matrix protein 1 (MP1) or CMV pp65, to act as antigen presenting cells (T-APC) in order to expand autologous viral-specific T cells in vitro and in vivo. The viral-specific effector T cells can then be genetically modified with a CD19-specific chimeric immunoreceptor (CD19R), which recognizes CD19 on malignant B cells, independent of MHC. By using these viral-specific T cells as a platform for the introduction of CD19R, we now demonstrate that bi-specific T cells express the chemokine receptor CCR7, which is implicated in the trafficking of T cells to lymph nodes. We demonstrate that this chemokine receptor functions to directionally chemotax the genetically modified bi-specific T-cells along concentration gradients of CCL19 or CCL21. We further demonstrate that both the endogenous and introduced chimeric immunoreceptor continue to function in CCR7+ bi-specific T cells. Indeed, the bi-specific T cells are capable of augmented cytokine production and proliferation upon docking with both CD19 and MP1 antigens, compared with these same T cells interacting with either CD19 or MP1 alone. This enhanced activation is an explanation for the enhanced in vivo anti-tumor activity demonstrated by bi-specific T-cells when stimulated with MP1+ T-APC in treating CD19+ lymphoma in NOD/scid mice. An advantage of this methodology is that the CCR7+ bi-specific T cells and T-APC can be genetically modified and expanded in compliance with current good manufacturing practice (cGMP) for 2nd generation Phase I/II clinical trials to test their ability to traffic to sites of lymphoma providing potent regional/local T-cell activation. Legend: (A) CCR7+ viral- and CD19-bi-specific T cells migrate along recombinant CCL19 and CCL21 concentration gradients, whereas CCR7neg CD19-specific T cells do not. (B) Stimulation of both introduced chimeric immunoreceptor and endogenous T-cell receptor on CD19- and MP1- bi-specific T-cells, using artificial APC, results in augmented cytokine production. Figure Figure


Blood ◽  
2003 ◽  
Vol 101 (4) ◽  
pp. 1637-1644 ◽  
Author(s):  
Laurence J. N. Cooper ◽  
Max S. Topp ◽  
Lisa Marie Serrano ◽  
Sergio Gonzalez ◽  
Wen-Chung Chang ◽  
...  

Relapse of B-lineage acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (HSCT) commonly results from the failure of a graft-versus-leukemia (GVL) effect to eradicate minimal residual disease. Augmenting the GVL effect by the adoptive transfer of donor-derived B-ALL–specific T-cell clones is a conceptually attractive strategy to decrease relapse rates without exacerbating graft-versus-host disease (GVHD). Toward this end, we investigated whether a genetic engineering approach could render CD8+ cytotoxic T lymphocytes (CTLs) specific for tumor cells that express the B-cell lineage cell surface molecule CD19. This was accomplished by the genetic modification of CTLs to express a chimeric immunoreceptor composed of a CD19-specific single-chain immunoglobulin extracellular targeting domain fused to a CD3-ζ intracellular signaling domain. CD19-redirected CTL clones display potent CD19-specific lytic activity and chimeric immunoreceptor-regulated cytokine production and proliferation. Because B-ALL cells can evade T-cell/natural killer- cell recognition by down-regulation of cell surface accessory molecules that participate in the formation of a functional immunologic synapse, we compared the CD19-specific effector function of genetically modified CD8+ CTLs toward CD19+ cells with disparate levels of intercellular adhesion molecule 1 (ICAM-1), leukocyte function-associated antigen 1 (LFA-1), and LFA-3. We observed that recognition of B-lineage tumor lines by CD19-specific CTLs was not impaired by low levels of ICAM-1, LFA-1, and LFA-3 cell surface expression, a functional attribute that is likely a consequence of our high-affinity CD19-specific chimeric immunoreceptor. Furthermore, the CD19-specific CTLs could lyse primary B-ALL blasts. These preclinical observations form the basis for implementing clinical trials using donor-derived CD19-specific T-cell clones to treat or prevent relapse of B-ALL after allogeneic HSCT.


Sign in / Sign up

Export Citation Format

Share Document