scholarly journals High Content Positional Biosensor Assay to Screen for Compounds that Prevent or Disrupt Androgen Receptor and Transcription Intermediary Factor 2 Protein-Protein Interactions

Author(s):  
Yun Hua ◽  
Daniel P. Camarco ◽  
Christopher J. Strock ◽  
Paul A. Johnston
2003 ◽  
Vol 31 (5) ◽  
pp. 1042-1046 ◽  
Author(s):  
J. Reid ◽  
R. Betney ◽  
K. Watt ◽  
I.J. McEwan

The AR (androgen receptor) belongs to the nuclear receptor superfamily and directly regulates patterns of gene expression in response to the steroids testosterone and dihydrotestosterone. Sequences within the large N-terminal domain of the receptor have been shown to be important for transactivation and protein–protein interactions; however, little is known about the structure and folding of this region. Folding of the AR transactivation domain was observed in the presence of the helix-stabilizing solvent trifluorethanol and the natural osmolyte TMAO (trimethylamine N-oxide). TMAO resulted in the movement of two tryptophan residues to a less solvent-exposed environment and the formation of a protease-resistant conformation. Critically, binding to a target protein, the RAP74 subunit of the general transcription factor TFIIF, resulted in a similar resistance to protease digestion, consistent with induced folding of the receptor transactivation domain. Our current hypothesis is that the folding of the transactivation domain in response to specific protein–protein interactions creates a platform for subsequent interactions, resulting in the formation of a competent transcriptional activation complex.


2006 ◽  
Vol 34 (6) ◽  
pp. 1054-1057 ◽  
Author(s):  
D.N. Lavery ◽  
I.J. McEwan

The AR (androgen receptor) is a ligand-activated transcription factor and member of the steroid receptor superfamily. The AR responds to the ligands testosterone and dihydrotestosterone and activates multiple downstream genes required in development and reproduction. During the events of transactivation, the AR makes specific protein–protein interactions with several basal transcription factors such as TBP (TATA-box-binding protein) and TFIIF (transcription factor IIF). These interactions occur predominantly within a defined region termed AF1 (activation function-1) located within the highly disordered N-terminal domain of the receptor. Our focus is on the structural aspects of AF1 and how this flexible and disordered domain generates functional interactions with regulators of transcription. Our working hypothesis is that AR-AF1 domain exhibits induced folding when contacted by transcription regulators (such as TFIIF) into a more compact and ‘active’ conformation, enabling further co-regulator recruitment and ultimately transcription. Structural flexibility and intrinsic disorder of AR-AF1 were studied using predictive algorithms and fluorescence spectroscopy under different experimental conditions and the results revealed this domain retains characteristics indicative of molten-globule or pre-molten-globule-like structures. We hypothesize that this partially folded intermediate state is important for, and enables the AF1 domain to make, multiple protein–protein interactions. The structural aspects of AR-AF1 and interactions with TFIIF are discussed.


2004 ◽  
Vol 11 (2) ◽  
pp. 281-293 ◽  
Author(s):  
I J McEwan

The androgen receptor is a ligand-activated transcription factor that binds DNA response elements as a homodimer. Binding sites for the receptor have been identified both upstream and downstream of the transcription start site. Once bound to DNA, the receptor contacts chromatin remodelling complexes, coactivator proteins and components of the general transcription machinery in order to regulate target gene expression. The main transactivation domain, termed AF1, is located within the structurally distinct amino-terminal domain. This region is structurally flexible but adopts a more folded conformation in the presence of the binding partner TFIIF, and this in turn enhances subsequent protein-protein interactions. Thus, there is likely to be a dynamic interplay between protein-protein interactions and protein folding, involving AF1, that is proposed to lead to the assembly and/or disassembly of receptor-dependent transcription complexes.


2021 ◽  
Author(s):  
Justin H Hwang ◽  
Rand Arafeh ◽  
Ji-Heui Seo ◽  
Sylvan C. Baca ◽  
Megan Ludwig ◽  
...  

Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with TGF-beta; and Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document