New Approach of Dye Removal in Textile Effluent: A Cost-Effective Management for Cleanup of Toxic Dyes in Textile Effluent by Water Hyacinth

Author(s):  
Sanmuga Priya Ekambaram ◽  
Senthamil Selvan Perumal ◽  
Durgalakshmi Rajendran ◽  
Dhevash Samivel ◽  
Mohammad Navas Khan
2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


1998 ◽  
Vol 37 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Peter Gerdes ◽  
Sabine Kunst

The bioavailability of phosphorus from different sources has been evaluated in the catchment area of the River Ilmenau (Lower-Saxony, Germany) by using algal assays. The P bioavailability describes the different potential of P from various sources of supporting eutrophication. Effluents from sewage treatment plants were highly bioavailable (72% of TP) whereas rainwater (26%) and erosion effluents (30%) showed a low bioavailability. In order to develop effective strategies to minimize P inputs into the river, source specific P bioavailability indices were determined and combined with a P balance to calculate inputs of vioavailable P (BAP) instead of total P (TP). It could be shown that the relative importance of the different P sources changes when applying BAP. Measures to reduce P inputs into the River Ilmenau will take P bioavailability into consideration and therefore lead to a more cost-effective management.


2020 ◽  
Vol 23 (7) ◽  
pp. 587-598 ◽  
Author(s):  
Ahmed Refaat ◽  
Hanan Elhaes ◽  
Nabila S. Ammar ◽  
Hanan S. Ibrahim ◽  
Medhat Ibrahim

Aim and Objective: Wastewater treatment/remediation is a very important process that has a great environmental and economic impact. Therefore, it is crucial to innovate different methods to remove pollutants of different sources from wastewater. This work was conducted in order to study the removal of lead (Pb+2) from wastewater using microspheres of composites of sodium alginate, cellulose and chitosan, as well as using a cost-effective green route through composites of sodium alginate and dried water hyacinth. Materials and Methods: Molecular modeling at B3LYP/6-31g(d,p) was utilized to study sodium alginate, cellulose and chitosan. Sodium alginate was cross-linked with calcium chloride to form microspheres, then both sodium alginate/cellulose and sodium alginate/chitosan were also crosslinked as 50/50 to form microspheres. The roots of the aquatic plant water hyacinth in dry form were added to the cross-linked sodium alginate for up to 70%. SEM and FTIR were employed to study the surface of the prepared microspheres and their structures respectively. Atomic absorption spectroscopy was used to study the levels of Pb. Results: Molecular modeling indicated that the blending of such structures enhances their ability to bind with surrounding molecules owing to their ability to form hydrogen bonds. SEM results indicated that homogeneous structures of cellulose and chitosan are deformed when blended with sodium alginate, and FTIR confirmed the proper formation of the desired blends. Microspheres from sodium alginate showed the ability to remove Pb+2 from wastewater. SEM indicated further deformation in the morphology with the roughness of sodium alginate/water hyacinth microspheres, while FTIR confirmed the uniform matrices of the microspheres. The removal of Pb+2 was enhanced because of the addition of dried water hyacinth's roots. Conclusion: Modeling, experimental and kinetic data highlight sodium alginate/water hyacinth root as a green route to remediate Pb+2 from wastewater.


1984 ◽  
Vol 1 (2) ◽  
pp. 21-23 ◽  
Author(s):  
David A. Gansner ◽  
Owen W. Herrick

Abstract People who have to make decisions about cost-effective management for gypsy moth need help in predicting and evaluating its effects. Field plot data collected during recent outbreaks in Pennsylvania are being used to develop guides for predicting forest stand losses to the pest Presented here are some of the more useful products of that effort to date. Easy-to-measure data for forest characteristics such as species composition and crown condition can be collected and applied in models that estimate potential stand and tree mortality and changes in timber value. North. J. Appl. For. 2:21-23, June 1984.


Author(s):  
E. Telegina ◽  
M. Tadzhiev

According to judgemental forecasts, in the next few years the revolutionary changes in the energy complex both in the USA and in the world in general are hardly possible, considering the enormous inertia of the energetic system and high expenses coming from the infrastructure supersession, even in case of cost-effective alternatives to the existing energy commodities. At the same time, the sharpening of energy security problems resulting from the growth of a global demand on energy products leads to perceprion of necessity for a new approach to forming the global energy market, and to development of new stability and reliability strategies maintenance for assured supplies of energy products. In recent years, the USA as the biggest consumer of energy resources in the world worked out a new national strategy of energy security provision. Its main targets are: meeting the requirements of the American economy of its own resources, lowering the import-dependence level, high use of innovation technologies, significant increase of investments in alternative energy sources, as well as of resource-and energy-saving.


Sign in / Sign up

Export Citation Format

Share Document