Analysis of Metabolites from the Tricarboxylic Acid Cycle for Yeast and Bacteria Samples Using Gas Chromatography Mass Spectrometry

Author(s):  
Reza Maleki Seifar ◽  
Angela ten Pierick ◽  
Patricia T. N. van Dam
1990 ◽  
Vol 265 (2) ◽  
pp. 569-574 ◽  
Author(s):  
C Norsten ◽  
T Cronholm

Acetate, 3-hydroxybutyrate, pyruvate, lactate, citrate, 2-oxoglutarate, succinate, fumarate and malate were analysed in rat bile by gas chromatography and gas chromatography/mass spectrometry of their O-melthyloxime-t-butyldimethylsilyl derivatives. The concentration of acetate increased to about 1.8 mmol/l after administration of [2,2,2-2H3]ethanol. Acetate was formed from ethanol to an extent of about 82% and retained all of the 2H at C-2, whereas 15% of the 2H had been lost in the tricarboxylic acid cycle intermediates and 24% in 3-hydroxybutyrate. Thus the exchange of 2H for 1H takes place after formation of acetyl CoA. For citrate and 3-hydroxybutyrate, 41% and 11% respectively was formed from [2,2,2-2H3]ethanol. These results indicate that different pools of acetyl CoA are used for the synthesis of ketone bodies and citrate, with the latter being derived from ethanol to a much larger extent. Smaller fractions of 2-oxoglutarate (16%) and succinate (5%) were derived from [2,2,2--2H3]ethanol, indicating significant contributions from amino acids.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 231
Author(s):  
Chengnan Fang ◽  
Hui Wang ◽  
Zhikun Lin ◽  
Xinyu Liu ◽  
Liwei Dong ◽  
...  

Hepatocellular carcinoma (HCC) displays a high degree of metabolic and phenotypic heterogeneity and has dismal prognosis in most patients. Here, a gas chromatography–mass spectrometry (GC-MS)-based nontargeted metabolomics method was applied to analyze the metabolic profiling of 130 pairs of hepatocellular tumor tissues and matched adjacent noncancerous tissues from HCC patients. A total of 81 differential metabolites were identified by paired nonparametric test with false discovery rate correction to compare tumor tissues with adjacent noncancerous tissues. Results demonstrated that the metabolic reprogramming of HCC was mainly characterized by highly active glycolysis, enhanced fatty acid metabolism and inhibited tricarboxylic acid cycle, which satisfied the energy and biomass demands for tumor initiation and progression, meanwhile reducing apoptosis by counteracting oxidative stress. Risk stratification was performed based on the differential metabolites between tumor and adjacent noncancerous tissues by using nonnegative matrix factorization clustering. Three metabolic clusters displaying different characteristics were identified, and the cluster with higher levels of free fatty acids (FFAs) in tumors showed a worse prognosis. Finally, a metabolite classifier composed of six FFAs was further verified in a dependent sample set to have potential to define the patients with poor prognosis. Together, our results offered insights into the molecular pathological characteristics of HCC.


Sign in / Sign up

Export Citation Format

Share Document