Metabolomics in Stem Cell Biology Research

Author(s):  
Zhen Sun ◽  
Jing Zhao ◽  
Hua Yu ◽  
Chenyang Zhang ◽  
Hu Li ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Kamonnaree Chotinantakul ◽  
Wilairat Leeanansaksiri

Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.


2017 ◽  
Vol 15 (5) ◽  
pp. 255-256
Author(s):  
Fatemeh Akyash ◽  
Fatemeh Sadeghian-Nodoushan ◽  
Somayyeh Sadat Tahajjodi ◽  
Habib Nikukar ◽  
Ehsan Farashahi Yazd ◽  
...  

10.2741/e509 ◽  
2012 ◽  
Vol E4 (5) ◽  
pp. 1871-1887 ◽  
Author(s):  
Karlheinz Friedrich

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2021 ◽  
Vol 16 (1) ◽  
pp. 3-9
Author(s):  
Owen Rackham ◽  
Patrick Cahan ◽  
Nancy Mah ◽  
Samantha Morris ◽  
John F. Ouyang ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S27
Author(s):  
Satish Nandakumar ◽  
Erik Bao ◽  
Xiaotian Liao ◽  
Alexander Bick ◽  
Juha Karjalainen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document