Methods of Measuring Binding, Some Extracellular Carrier Proteins, and Intracellular Receptor Proteins

1988 ◽  
pp. 189-215
Author(s):  
P. J. Thomas
2007 ◽  
Vol 5 (1) ◽  
pp. nrs.05001 ◽  
Author(s):  
Iain J. McEwan ◽  
Derek Lavery ◽  
Katharina Fischer ◽  
Kate Watt

Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response.


Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


1983 ◽  
Vol 22 (05) ◽  
pp. 251-254
Author(s):  
R. Schmitz ◽  
H. Bongers ◽  
A. Löw ◽  
J. Mahlstedt ◽  
K. Joseph ◽  
...  

This study demonstrates that in spite of measured normal concentrations of carrier proteins one cannot deduce in all cases a normal fT3 from a normal level of TT3 when 1-thyroxine given for diagnostic or therapeutic purposes is present in excess. The displacement of 1-triiodothyronine from its binding sites is shown in 35 patients with non-toxic goitre who received an oral dose of 200 μg 1-thyroxine/die for two weeks. Apart from a significant increase of TT4 (from 7.85 to 14.21 μg/dl ≙ + 81 %) and of fT4 (from 1.58 to 3.7 ng/dl ≙ + 134%) there is only a slight increase in TT3 from 148 to 158 ng/dl (≙ + 10%) after 14 days of treatment. By contrast fT3 rises clearly from 4.97 to 8.07 pg/ml ≙ + 63% (normal range: 2.8-5.6 pg/ml). Compared with the increase of TT3 (+ 10%) the free T3 rises by a factor of 6.3 (63 %/10%). On account of higher affinity of 1-thyroxine to binding proteins the free T4 is influenced to a lesser degree. Compared with the increase of TT4 (+ 81 %) free T4 rises by a factor of 1.6 (134%/81 %). It is supposed that the serum concentration of free T3 can be increased despite a normal concentration of TT3 when 1-thyroxine is present in excess. Therefore, for laboratory work fT3 should be assigned a higher validity than TT3 when patients are treated with comparatively high doses of 1-thyroxine.


Author(s):  
Akhileshwar Srivastava ◽  
Divya Singh

Presently, an emerging disease (COVID-19) has been spreading across the world due to coronavirus (SARS-CoV2). For treatment of SARS-CoV2 infection, currently hydroxychloroquine has been suggested by researchers, but it has not been found enough effective against this virus. The present study based on in silico approaches was designed to enhance the therapeutic activities of hydroxychloroquine by using curcumin as an adjunct drug against SARS-CoV2 receptor proteins: main-protease and S1 receptor binding domain (RBD). The webserver (ANCHOR) showed the higher protein stability for both receptors with disordered score (<0.5). The molecular docking analysis revealed that the binding energy (-24.58 kcal/mol) of hydroxychloroquine was higher than curcumin (-20.47 kcal/mol) for receptor main-protease, whereas binding energy of curcumin (<a>-38.84</a> kcal/mol) had greater than hydroxychloroquine<a> (-35.87</a> kcal/mol) in case of S1 receptor binding domain. Therefore, this study suggested that the curcumin could be used as combination therapy along with hydroxychloroquine for disrupting the stability of SARS-CoV2 receptor proteins


Sign in / Sign up

Export Citation Format

Share Document