Cytokine-Based Gene Therapy for Brain Tumors

Author(s):  
John H. Sampson ◽  
Darell D. Bigner ◽  
Glenn Dranoff
Keyword(s):  
1993 ◽  
Vol 79 (5) ◽  
pp. 729-735 ◽  
Author(s):  
David Barba ◽  
Joseph Hardin ◽  
Jasodhara Ray ◽  
Fred H. Gage

✓ Gene therapy has many potential applications in central nervous system (CNS) disorders, including the selective killing of tumor cells in the brain. A rat brain tumor model was used to test the herpes simplex virus (HSV)-thymidine kinase (TK) gene for its ability to selectively kill C6 and 9L tumor cells in the brain following systemic administration of the nucleoside analog ganciclovir. The HSV-TK gene was introduced in vitro into tumor cells (C6-TK and 9L-TK), then these modified tumor cells were evaluated for their sensitivity to cell killing by ganciclovir. In a dose-response assay, both C6-TK and 9L-TK cells were 100 times more sensitive to killing by ganciclovir (median lethal dose: C6-TK, 0.1 µg ganciclovir/ml; C6, 5.0 µg ganciclovir/ml) than unmodified wild-type tumor cells or cultured fibroblasts. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to kill established brain tumors in rats as quantified by both stereological assessment of brain tumor volumes and studies of animal survival over 90 days. Rats with brain tumors established by intracerebral injection of wild-type or HSV-TK modified tumor cells or by a combination of wild-type and HSV-TK-modified cells were studied with and without ganciclovir treatments. Stereological methods determined that ganciclovir treatment eliminated tumors composed of HSV-TK-modified cells while control tumors grew as expected (p < 0.001). In survival studies, all 10 rats with 9L-TK tumors treated with ganciclovir survived 90 days while all untreated rats died within 25 days. Curiously, tumors composed of combinations of 9L and 9L-TK cells could be eliminated by ganciclovir treatments even when only one-half of the tumor cells carried the HSV-TK gene. While not completely understood, this additional tumor cell killing appears to be both tumor selective and local in nature. It is concluded that HSV-TK gene therapy with ganciclovir treatment does selectively kill tumor cells in the brain and has many potential applications in CNS disorders, including the treatment of cancer.


2002 ◽  
Vol 76 (6) ◽  
pp. 2753-2762 ◽  
Author(s):  
Victor W. van Beusechem ◽  
Jacques Grill ◽  
D. C. Jeroen Mastenbroek ◽  
Thomas J. Wickham ◽  
Peter W. Roelvink ◽  
...  

ABSTRACT The application of adenoviral vectors in cancer gene therapy is hampered by low receptor expression on tumor cells and high receptor expression on normal epithelial cells. Targeting adenoviral vectors toward tumor cells may improve cancer gene therapy procedures by providing augmented tumor transduction and decreased toxicity to normal tissues. Targeting requires both the complete abolition of native tropism and the addition of a new specific binding ligand onto the viral capsid. Here we accomplished this by using doubly ablated adenoviral vectors, lacking coxsackievirus-adenovirus receptor and αv integrin binding capacities, together with bispecific single-chain antibodies targeted toward human epidermal growth factor receptor (EGFR) or the epithelial cell adhesion molecule. These vectors efficiently and selectively targeted both alternative receptors on the surface of human cancer cells. Targeted doubly ablated adenoviral vectors were also very efficient and specific with primary human tumor specimens. With primary glioma cell cultures, EGFR targeting augmented the median gene transfer efficiency of doubly ablated adenoviral vectors 123-fold. Moreover, EGFR-targeted doubly ablated vectors were selective for human brain tumors versus the surrounding normal brain tissue. They transduced organotypic glioma and meningioma spheroids with efficiencies similar to those of native adenoviral vectors, while exhibiting greater-than-10-fold-reduced background levels on normal brain explants from the same patients. As a result, EGFR-targeted doubly ablated adenoviral vectors had a 5- to 38-fold-improved tumor-to-normal brain targeting index compared to native vectors. Hence, single-chain targeted doubly ablated adenoviral vectors are promising tools for cancer gene therapy. They should provide an improved therapeutic index with efficient tumor transduction and effective protection of normal tissue.


2018 ◽  
pp. 243-262
Author(s):  
Kenneth W. Culver ◽  
John Van Gilder ◽  
Thomas Carlstrom ◽  
Michael Prados ◽  
Charles J. Link
Keyword(s):  

10.1038/74710 ◽  
2000 ◽  
Vol 6 (4) ◽  
pp. 447-450 ◽  
Author(s):  
Sara Benedetti ◽  
Barbara Pirola ◽  
Bianca Pollo ◽  
Lorenzo Magrassi ◽  
Maria Grazia Bruzzone ◽  
...  

Neurosurgery ◽  
2000 ◽  
Vol 46 (3) ◽  
pp. 663-669 ◽  
Author(s):  
Nazer H. Qureshi ◽  
Krzysztof S. Bankiewicz ◽  
David N. Louis ◽  
Fred H. Hochberg ◽  
E. Antonio Chiocca ◽  
...  

2000 ◽  
Vol 92 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Roger J. Packer ◽  
Cory Raffel ◽  
Judith G. Villablanca ◽  
Jörg-Christian Tonn ◽  
Stefan E. Burdach ◽  
...  

Object. The outcome for children with recurrent malignant brain tumors is poor. The majority of patients die of progressive disease within months of relapse, and other therapeutic options are needed. The goal of this Phase I study was to evaluate the safety of in vivo suicide gene therapy in 12 children with recurrent, malignant, supratentorial brain tumors.Methods. After optimal repeated tumor resection, multiple injections of murine vector—producing cells shedding murine replication—defective retroviral vectors coding the herpes simplex virus thymidine kinase type 1 (HSV-Tk1) gene were made into the rim of the resection cavity. Fourteen days after the vector-producing cells were injected, ganciclovir was administered for 14 days. The retroviral vector that was used only integrated and expressed HSV-Tk1 in proliferating cells, which are killed after a series of metabolic events lead to cell death. The median age of the patients was 11 years (range 2–15 years). Treated brain tumors included seven malignant gliomas, two ependymomas, and three primitive neuroectodermal tumors. The patients were treated with one of three escalating dose concentrations of vector-producer cells. Four transient central nervous system adverse effects were considered possibly related to the vector-producing cells. In no child did permanent neurological worsening or ventricular irritation develop, and tests for replication-competent retroviruses yielded negative findings.Conclusions. This Phase I study demonstrates that in vivo gene therapy in which a replication-defective retroviral vector in murine vector—producing cells is delivered by brain injections can be performed with satisfactory safety in a select group of children with localized supratentorial brain tumors.


Sign in / Sign up

Export Citation Format

Share Document