Phenotypic Characteristics of Neonatal B Cells

1984 ◽  
Vol 159 (4) ◽  
pp. 1189-1200 ◽  
Author(s):  
D H Sherr ◽  
M E Dorf

A helper cell population with phenotypic characteristics of both B and T cells is described. This helper population, called BH, is present in normal unprimed C57BL/6 mice and preferentially helps the expression of NPb idiotype-bearing plaque-forming B cells in the absence of T helper cells. Its surface phenotype is Lyt-1.2+, Ig+, Lyb-3+, Thy-1.2-, Lyt-2.2-. The helper activity of the BH population is IgH restricted and BH cells selectively bind NPb idiotypic determinants. Collectively the data demonstrate that this unique subpopulation can regulate the response of antibody-secreting B cells through specific recognition of idiotypic determinants.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


1986 ◽  
Vol 6 (1) ◽  
pp. 183-194 ◽  
Author(s):  
L A Serunian ◽  
N Rosenberg

Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.


Author(s):  
F. B. P. Wooding ◽  
K. Pedley ◽  
N. Freinkel ◽  
R. M. C. Dawson

Freinkel et al (1974) demonstrated that isolated perifused rat pancreatic islets reproduceably release up to 50% of their total inorganic phosphate when the concentration of glucose in the perifusion medium is raised.Using a slight modification of the Libanati and Tandler (1969) method for localising inorganic phosphate by fixation-precipitation with glutaraldehyde-lead acetate we can demonstrate there is a significant deposition of lead phosphate (identified by energy dispersive electron microscope microanalysis) at or on the plasmalemma of the B cell of the islets (Fig 1, 3). Islets after incubation in high glucose show very little precipitate at this or any other site (Fig 2). At higher magnification the precipitate seems to be intracellular (Fig 4) but since any use of osmium or uranyl acetate to increase membrane contrast removes the precipitate of lead phosphate it has not been possible to verify this as yet.


Author(s):  
John W. Roberts ◽  
E. R. Witkus

The isopod hepatopancreas, as exemplified by Oniscus ascellus. is comprised of four blind-ending diverticula. The regenerative cells at the tip of each diverticula differentiate into either club-shaped B-cells, which serve a secretory function, or into conoid S-cells, which serve in the absorption and storage of nutrients.The glandular B-cells begin producing secretory material with the development of rough endoplasmic reticulum during their process of maturation from the undifferentiated regenerative cells. Cytochemical and morphological data indicate that the hepatopancreas sequentially produces two types of secretory material within the large club-shaped cells. The production of the carbohydrate-like secretory product in immature cells seems to be phased out as the production of the osmiophilic secretion was phased in as the cell matured.


Author(s):  
Irene Stachura ◽  
Milton H. Dalbow ◽  
Michael J. Niemiec ◽  
Matias Pardo ◽  
Gurmukh Singh ◽  
...  

Lymphoid cells were analyzed within pulmonary infiltrates of six patients with lymphoproliferative disorders involving lungs by immunofluorescence and immunoperoxidase techniques utilizing monoclonal antibodies to cell surface antigens T11 (total T), T4 (inducer/helper T), T8 (cytotoxic/suppressor T) and B1 (B cells) and the antisera against heavy (G,A,M) and light (kappa, lambda) immunoglobulin chains. Three patients had pseudolymphoma, two patients had lymphoma and one patient had lymphomatoid granulomatosis.A mixed population of cells was present in tissue infiltrates from the three patients with pseudolymphoma, IgM-kappa producing cells constituted the main B cell type in one patient. In two patients with lymphoma pattern the infiltrates were composed exclusively of T4+ cells and IgG-lambda B cells predominated slightly in the patient with lymphomatoid granulomatosis.


Author(s):  
G.M. Vernon ◽  
A. Surace ◽  
R. Witkus

The hepatopancreas consists of a pair of bilobed tubules comprised of two epithelial cell types. S cells are absorptive and accumulate metals such as copper and zinc. Ca++ concentrations vary between the S and B cells and during the molt cycle. Roer and Dillaman implicated Ca++-ATPase in calcium transport during molting in Carcinus maenas. This study was undertaken to compare the localization of Ca++-ATPase activity in the S and B cells during intermolt.


Author(s):  
Jane E. Ramberg ◽  
Shigeto Tohma ◽  
Peter E. Lipsky

Intercellular adhesion molecule (ICAM-1) appears to be a ligand for LFA-1 dependent adhesion in T cell mediated cytotoxcity. It is found on cells of both hematopoietic and non-hematopoietic origin. While observing the activity of ICAM-1 on the surfaces of interacting T and B cells, we found that we could successfully carry out a pre-embedding double staining procedure utilizing both colloidal gold and peroxidase conjugated reagents.On 24-well microtiter plates, mitomycin-treated T4 cells were stimulated with 64.1 (anti-CD3) for one hour before the addition, in some instances, of B cells. Following a 12-48 hour incubation at 38°C, the cells were washed and then immunostained with a colloidal gold conjugated RFB-4 (anti-CD22); biotinylated R6.5 (anti-ICAM-1); followed by streptavidin/peroxidase. This method allowed us to observe two different antigens without concern about possible cross-reaction of reagents. Because we suspected ICAM-1 and R6.5 were sensitive to fixation, we tried varying concentrations of fresh paraformaldehyde before R6.5, after R6.5 and after streptavidin/peroxidase. All immunostaining and washing was done on ice with ice cold reagents.


Sign in / Sign up

Export Citation Format

Share Document