Tissue Recombinants to Study Extracellular Matrix Targeting to Basement Membranes

Author(s):  
Patricia Simon-Assmann ◽  
Anne-Laure Bolcato-Bellemin ◽  
Annick Klein ◽  
Michèle Kedinger
Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 95-112
Author(s):  
Fiona Tuckett ◽  
Gillian M. Morriss-Kay

This paper forms part of our study of the extracellular matrix and its role in the morphogenesis of the brain during the period of neurulation in the rat embryo. Using indirect immunofluorescence with polyclonal antibodies, we present here a descriptive study of the distribution of the matrix glycoproteins fibronectin, laminin and entactin. The observed distribution of the fibronectin matrix implicates it in providing a structural element in several morphologically active sites; in addition our observations support the previously suggested involvement of fibronectin in the migration of neural crest cells. Entactin was present only in the basement membranes in conjunction with laminin which was not itself confined to these regions. Laminin was also identified within the mesenchymal extracellular matrix, and its general distribution confirms the previously documented role of laminin in maintaining epithelial structure and organization. No patterning in the distribution of these three glycoproteins could be correlated with the change in shape of the neural epithelium associated with either tube formation or neuromere morphogenesis.


1991 ◽  
Vol 99 (3) ◽  
pp. 651-656 ◽  
Author(s):  
S.J. Skinner ◽  
C.E. Somervell ◽  
S. Buch ◽  
M. Post

In previous studies we have shown that transferrin (Tf) specifically stimulates dermatan- and chondroitin-sulphate proteoglycan accumulation around lung cells, and in the extracellular matrix of lung tissue, in vitro. The aim of this study was to determine whether the gene for Tf was activated in specific lung cells during development, and whether the protein product showed evidence of association with extracellular matrix. The expression of the gene in developing lung was shown by the hybridization of a Tf cDNA to a 2.4 kb (kilobase) mRNA species in total RNA extracts of foetal lung. The expression of the Tf gene in comparison to a control gene (GAPD, glyceraldehyde phosphate dehydrogenase) was greatest in 19, 20 and 21 day foetal lung, rising from low levels on day 18 and decreasing markedly at term (day 22). Extracts of RNA from primary cultures of mesenchymal fibroblasts and type II epithelial cells were also analysed for Tf mRNA. These experiments indicated that Tf gene expression was predominantly confined to the mesenchymal compartment. The presence of Tf in histological sections of foetal lung was demonstrated by immunohistochemistry and showed a distinct pattern, with intense staining of the alveolar and the capillary basement membranes. The matrix surrounding the mesenchymal fibroblasts was stained in a diffuse network while epithelial cells were unstained. The staining was low from days 12–16 of gestation, increased to a maximum at days 19–20 but decreased markedly toward term. The Tf staining did not co-localize with transferrin receptor, also demonstrated by immunohistochemistry. These results suggest that Tf is not only present at specific sites in the developing lung, but also is synthesized according to a strict developmental schedule of gene expression.


Development ◽  
1985 ◽  
Vol 89 (1) ◽  
pp. 243-257
Author(s):  
Koji Kimata ◽  
Teruyo Sakakura ◽  
Yutaka Inaguma ◽  
Masato Kato ◽  
Yasuaki Nishizuka

Two different types of mesenchyme, fat pad precursor cells (FP) and fibroblastic cells (MM) are involved in the morphogenesis of mammary gland epithelium of mouse embryo. Especially, an interaction between FP and the epithelium is necessary for its characteristic shaping of ductal branching structure. To assess the relative participations of the mesenchymes, we have analysed the extracellular matrix products by immunofluorescent staining method using antibodies to laminin, proteoheparan sulphate, and fibronectin. The staining patterns suggested that, after the 16th day of gestation when fatty substances first appeared in FP and the epithelial rudiments started to elongate and branch rapidly, FP initiated synthesis of laminin and proteoheparan sulphate, while MM synthesized fibronectin at all times. Attention was also paid to differences in the epithelial basement membranes (BM) concomitant with ones in the mesenchyme. BM were always stained with antibodies to laminin and proteoheparan sulphate. However, topographical differences in thickness were observed: the one facing FP, often seen at the tip region of the end bud, was thin, while the other surrounded by MM, often at the flank region of the duct, was thick. Specific elaboration of BM-like extracellular matrix products by FP may attribute to observed differences in BM thickness which are related to the characteristic shaping of the mammary gland.


1989 ◽  
Vol 37 (5) ◽  
pp. 757-763 ◽  
Author(s):  
A Colombatti ◽  
A Poletti ◽  
A Carbone ◽  
D Volpin ◽  
G M Bressan

We describe the immunohistochemical distribution of components of the extracellular matrix of the chick lymphoid system. In the thymus, basement membranes of epithelial cells bordering the lobules were intensely stained by laminin antibodies; fibronectin antibodies labeled the capsule and the septal matrix, and similar reactivity was seen with tropoelastin and gp 115 antibodies. No positivity was detected with any of the antibodies within the cortical parenchymal cells. Laminin was not detected in the medullary parenchyma, whereas fibronectin was present as coarse fibers. Tropoelastin and gp 115 appeared as a finer and more diffuse meshwork. In the bursa, laminin antibodies outlined the epithelial cells separating the cortex from the medulla. Fibronectin, tropoelastin, and gp 115 antibody stained the interfollicular septa and the cortical matrix, although to a different extent. Laminin was also detected in association with the interfollicular epithelium (IFE) basement membrane, whereas no staining was found underneath the follicle-associated epithelium (FAE). FAE cells not only lack a proper basement membrane but are also not separated from medullary lymphocytes by any of the other extracellular matrix components were investigated. Consequently, medullary lymphocytes are not sequestered, and can come easily into contact with antigens present in the intestinal lumen. All four antibodies stained the spleen capsule and spleen blood vessels, tropoelastin and gp 115 antibodies giving the strongest reactivity. A fine trabecular staining pattern was detected with gp 115 antibodies in the white pulp.


1992 ◽  
Vol 40 (6) ◽  
pp. 859-868 ◽  
Author(s):  
P Lorimier ◽  
P Mezin ◽  
F Labat Moleur ◽  
N Pinel ◽  
S Peyrol ◽  
...  

In this study we determined the ultrastructural distribution of the various components of the extracellular matrix (laminin, fibronectin, Type I, III, and IV collagens) of the normal peripheral nerve in adult rat. The localization of these macromolecules was investigated in basement membranes as well as in different areas of epi-, peri-, and endoneurium, by use of a pre-embedding immunoperoxidase method.


2020 ◽  
Vol 295 (36) ◽  
pp. 12697-12705
Author(s):  
Boushra Bathish ◽  
Martina Paumann-Page ◽  
Louise N. Paton ◽  
Anthony J. Kettle ◽  
Christine C. Winterbourn

Peroxidasin is a heme peroxidase that oxidizes bromide to hypobromous acid (HOBr), a powerful oxidant that promotes the formation of the sulfilimine crosslink in collagen IV in basement membranes. We investigated whether HOBr released by peroxidasin leads to other oxidative modifications of proteins, particularly bromination of tyrosine residues, in peroxidasin-expressing PFHR9 cells. Using stable isotope dilution LC-MS/MS, we detected the formation of 3-bromotyrosine, a specific biomarker of HOBr-mediated protein modification. The level of 3-bromotyrosine in extracellular matrix proteins from normally cultured cells was 1.1 mmol/mol tyrosine and decreased significantly in the presence of the peroxidasin inhibitor, phloroglucinol. A negligible amount of 3-bromotyrosine was detected in peroxidasin-knockout cells. 3-Bromotyrosine formed both during cell growth in culture and in the isolated decellularized extracellular matrix when embedded peroxidasin was supplied with hydrogen peroxide and bromide. The level of 3-bromotyrosine was significantly higher in extracellular matrix than intracellular proteins, although a low amount was detected intracellularly. 3-Bromotyrosine levels increased with higher bromide concentrations and decreased in the presence of physiological concentrations of thiocyanate and urate. However, these peroxidase substrates showed moderate to minimal inhibition of collagen IV crosslinking. Our findings provide evidence that peroxidasin promotes the formation of 3-bromotyrosine in proteins. They show that HOBr produced by peroxidasin is selective for, but not limited to, the crosslinking of collagen IV. Based on our findings, the use of 3-bromotyrosine as a specific biomarker of oxidative damage by HOBr warrants further investigation in clinical conditions linked to high peroxidasin expression.


Sign in / Sign up

Export Citation Format

Share Document