scholarly journals Extracellular matrix of lymphoid tissues in the chick.

1989 ◽  
Vol 37 (5) ◽  
pp. 757-763 ◽  
Author(s):  
A Colombatti ◽  
A Poletti ◽  
A Carbone ◽  
D Volpin ◽  
G M Bressan

We describe the immunohistochemical distribution of components of the extracellular matrix of the chick lymphoid system. In the thymus, basement membranes of epithelial cells bordering the lobules were intensely stained by laminin antibodies; fibronectin antibodies labeled the capsule and the septal matrix, and similar reactivity was seen with tropoelastin and gp 115 antibodies. No positivity was detected with any of the antibodies within the cortical parenchymal cells. Laminin was not detected in the medullary parenchyma, whereas fibronectin was present as coarse fibers. Tropoelastin and gp 115 appeared as a finer and more diffuse meshwork. In the bursa, laminin antibodies outlined the epithelial cells separating the cortex from the medulla. Fibronectin, tropoelastin, and gp 115 antibody stained the interfollicular septa and the cortical matrix, although to a different extent. Laminin was also detected in association with the interfollicular epithelium (IFE) basement membrane, whereas no staining was found underneath the follicle-associated epithelium (FAE). FAE cells not only lack a proper basement membrane but are also not separated from medullary lymphocytes by any of the other extracellular matrix components were investigated. Consequently, medullary lymphocytes are not sequestered, and can come easily into contact with antigens present in the intestinal lumen. All four antibodies stained the spleen capsule and spleen blood vessels, tropoelastin and gp 115 antibodies giving the strongest reactivity. A fine trabecular staining pattern was detected with gp 115 antibodies in the white pulp.

1990 ◽  
Vol 110 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
C H Streuli ◽  
M J Bissell

Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.


1991 ◽  
Vol 39 (11) ◽  
pp. 1539-1546 ◽  
Author(s):  
J Lannes-Vieira ◽  
M Dardenne ◽  
W Savino

The present investigation was an ontogenetic study on the distribution of extracellular matrix (ECM) components in the thymic microenvironment of C57BL/6 mice (comprising young and old adults and developing embryos) and NZB mice. In addition, we evaluated the in vivo and in vitro influence of hydrocortisone treatment on basement membrane protein production by a thymic epithelial cell line. In young normal animals, Type I collagen was restricted to the interstitial spaces of the capsule and septa, where Type IV collagen, fibronectin, and laminin could be detected in the basement membranes. In addition, fibronectin-containing fibers were seen within the medulla of the thymic lobules. The ECM distribution pattern in the developing embryos was distinct from that observed in adults, since a fine meshwork of basement membrane-containing proteins was clearly seen throughout the parenchyma. Moreover, aging normal and NZB mice exhibited a denser ECM pattern than young adult normal animals. Treatment with hydrocortisone, both in vivo and in vitro, resulted in enhancement of ECM expression, detected in mice as early as 2 hr post injection and lasting for several days. Considering that the fluctuations of ECM expression parallel important events in thymocyte differentiation, we discuss the possibility that the two phenomena may be associated.


1980 ◽  
Vol 17 (6) ◽  
pp. 699-719 ◽  
Author(s):  
P. Schneider ◽  
G. Pappritz ◽  
R. Müller-Peddinghaus ◽  
M. Bauer ◽  
H. Lehmann ◽  
...  

A nephropathy with severe tubular atrophy was observed in Beagle dogs after oral administration of K2HPO4 for 14 or 38 weeks. We describe the complete lysosomal degradation of atrophying tubular epithelial cells. During two experiments of 14 and 38 weeks duration, respectively, a total of 15 Beagle dogs received 0.8 g K2HPO4/kg body weight daily with their food. All dogs were examined clinically at regular intervals. Renal biopsies were taken in the fourth week from beagles of the 14-week study. Results were compared with those of control dogs. At the end of the experiments the animals were killed and necropsies done. Different stains and histochemical reactions were applied to paraffin sections of the kidneys. Acid phosphatase and β-glucuronidase were found on cryostat sections. Kidneys fixed by perfusion of five Beagles from the 38-week study and three Beagles of the 14-week study, and from five control dogs, were examined electron microscopically. Ultrahistochemically, acid phosphatase was demonstrated. Clinically, the dogs in both experiments vomited, were cachectic, and had elevated creatinine and blood urea nitrogen. Morphologically, qualitatively identical changes were seen, but the renal damage was most marked at 38 weeks. There were disseminated tubular atrophy (usually of the proximal tubules), focal scar tissue and nephrocalcinosis. The following pathogenesis was established for the lesions of the proximal tubule: Tubular atrophy begins with loss of differentiation of epithelial cells. Enzyme histochemistry, ultrahistochemistry and electron microscopy show an increase in autophagic vacuoles and autophagolysosomes. The lysosomal bodies showing fusion enclose large parts of the cytoplasm as the process continues. Complete lysosomal degradation of epithelial cells and extrusion of large lysosomes into the tubular lumen follow. After complete enzymatic digestion of the intratubular detritus, the residue is empty, convoluted and collapsed tubular basement membrane. Atrophic tubular epithelial cells have many organelle-free zones at their base, which contain fine filamentous material resembling that of the basement membrane. The degradation processes described here may explain why clinically the urinary sediment contains few cylinders and epithelial cells and why proteinuria decreases significantly toward the end of the experiment. So far, it is not clear whether the tubular basement membrane is synthesized by the tubular cells, by fibroblasts or by both cell types. The presence of basement membrane-like material in tubular epithelial cells and in parietal epithelial cells of the glomerulus favors the view that epithelial cells produce the basement membranes and that increased production of basement membrane-like material is a sign of loss of differentiation.


1991 ◽  
Vol 99 (3) ◽  
pp. 651-656 ◽  
Author(s):  
S.J. Skinner ◽  
C.E. Somervell ◽  
S. Buch ◽  
M. Post

In previous studies we have shown that transferrin (Tf) specifically stimulates dermatan- and chondroitin-sulphate proteoglycan accumulation around lung cells, and in the extracellular matrix of lung tissue, in vitro. The aim of this study was to determine whether the gene for Tf was activated in specific lung cells during development, and whether the protein product showed evidence of association with extracellular matrix. The expression of the gene in developing lung was shown by the hybridization of a Tf cDNA to a 2.4 kb (kilobase) mRNA species in total RNA extracts of foetal lung. The expression of the Tf gene in comparison to a control gene (GAPD, glyceraldehyde phosphate dehydrogenase) was greatest in 19, 20 and 21 day foetal lung, rising from low levels on day 18 and decreasing markedly at term (day 22). Extracts of RNA from primary cultures of mesenchymal fibroblasts and type II epithelial cells were also analysed for Tf mRNA. These experiments indicated that Tf gene expression was predominantly confined to the mesenchymal compartment. The presence of Tf in histological sections of foetal lung was demonstrated by immunohistochemistry and showed a distinct pattern, with intense staining of the alveolar and the capillary basement membranes. The matrix surrounding the mesenchymal fibroblasts was stained in a diffuse network while epithelial cells were unstained. The staining was low from days 12–16 of gestation, increased to a maximum at days 19–20 but decreased markedly toward term. The Tf staining did not co-localize with transferrin receptor, also demonstrated by immunohistochemistry. These results suggest that Tf is not only present at specific sites in the developing lung, but also is synthesized according to a strict developmental schedule of gene expression.


2002 ◽  
Vol 282 (5) ◽  
pp. L1004-L1011 ◽  
Author(s):  
Nguyet M. Nguyen ◽  
Yushi Bai ◽  
Katsumi Mochitate ◽  
Robert M. Senior

Basement membranes have a critical role in alveolar structure and function. Alveolar type II cells make basement membrane constituents, including laminin, but relatively little is known about the production of basement membrane proteins by murine alveolar type II cells and a convenient system is not available to study basement membrane production by murine alveolar type II cells. To facilitate study of basement membrane production, with particular focus on laminin chains, we examined transformed murine distal respiratory epithelial cells (MLE-15), which have many structural and biochemical features of alveolar type II cells. We found that MLE-15 cells produce laminin-α5, a trace amount of laminin-α3, laminins-β1 and -γ1, type IV collagen, and perlecan. Transforming growth factor-β1 significantly induces expression of laminin-α1. When grown on a fibroblast-embedded collagen gel, MLE-15 cells assemble a basement membrane-like layer containing laminin-α5. These findings indicate that MLE-15 cells will be useful in modeling basement membrane production and assembly by alveolar type II cells.


Cell ◽  
1980 ◽  
Vol 19 (4) ◽  
pp. 1053-1062 ◽  
Author(s):  
Kari Alitalo ◽  
Markku Kurkinen ◽  
Antti Vaheri ◽  
Thomas Krieg ◽  
Rupert Timpl

2014 ◽  
Vol 134 (3) ◽  
pp. 663-670.e1 ◽  
Author(s):  
Stephen R. Reeves ◽  
Tessa Kolstad ◽  
Tin-Yu Lien ◽  
Molly Elliott ◽  
Steven F. Ziegler ◽  
...  

1991 ◽  
Vol 113 (5) ◽  
pp. 1231-1241 ◽  
Author(s):  
C J Soroka ◽  
M G Farquhar

A novel heparan sulfate proteoglycan (HSPG) present in the extracellular matrix of rat liver has been partially characterized. Proteoglycans were purified from a high salt extract of total microsomes from rat liver and found to consist predominantly (approximately 90%) of HSPG. A polyclonal antiserum raised against this fraction specifically recognized HSPG by immunoprecipitation and immunoblotting. The intact, fully glycosylated HSPG migrated as a broad smear (150-300 kD) by SDS-PAGE, but after deglycosylation with trifluoromethanesulfonic acid only a single approximately 40-kD band was seen. By immunocytochemistry this HSPG was localized in the perisinusoidal space of Disse associated with irregular clumps of basement membrane-like extracellular matrix material, some of which was closely associated with the hepatocyte sinusoidal cell surface. It was also localized in biosynthetic compartments (rough ER and Golgi cisternae) of hepatocytes, suggesting that this HSPG is synthesized and deposited in the space of Disse by the hepatocyte. The anti-liver HSPG IgG also stained basement membranes of hepatic blood vessels and bile ducts as well as those of kidney and several other organs (heart, pancreas, and intestine). An antibody that recognizes the basement membrane HSPG found in the rat glomerular basement membrane did not precipitate the 150-300-kD rat liver HSPG. We conclude that the liver sinusoidal space of Disse contains a novel population of HSPG that differs in its overall size, its distribution and in the size of its core protein from other HSPG (i.e., membrane-intercalated HSPG) previously described in rat liver. It also differs in its core protein size from HSPG purified from other extracellular matrix sources. This population of HSPG appears to be a member of the basement membrane HSPG family.


Sign in / Sign up

Export Citation Format

Share Document