Nitric Oxide—Induced Immunosensitization to Apoptosis by Fas-L and TRAIL

Author(s):  
Benjamin Bonavida ◽  
Sara Huerta-Yepez ◽  
Mario I. Vega ◽  
Demetrios A. Spandidos ◽  
Stravoula Baritaki
Keyword(s):  
1999 ◽  
Vol 67 (8) ◽  
pp. 3864-3871 ◽  
Author(s):  
Gislâine A. Martins ◽  
Leda Q. Vieira ◽  
Fernando Q. Cunha ◽  
João S. Silva

ABSTRACT We have previously shown that splenocytes from mice acutely infected with Trypanosoma cruzi exhibit high levels of nitric oxide (NO)-mediated apoptosis. In the present study, we used the gamma interferon (IFN-γ)-knockout (IFN-γ−/−) mice to investigate the role of IFN-γ in modulating apoptosis induction and host protection during T. cruzi infection in mice. IFN-γ−/− mice were highly susceptible to infection and exhibited significant reduction of NO production and apoptosis levels in splenocytes but normal lymphoproliferative response compared to the infected wild-type (WT) mice. Furthermore, IFN-γ modulates an enhancement of Fas and Fas-L expression after infection, since the infected IFN-γ−/− mice showed significantly lower levels of Fas and Fas-L expression. The addition of recombinant murine IFN-γ to spleen cells cultures from infected IFN-γ−/−mice increased apoptosis levels, Fas expression, and NO production. In the presence of IFN-γ and absence of NO, although Fas expression was maintained, apoptosis levels were significantly reduced but still higher than those found in splenocytes from uninfected mice, suggesting that Fas–Fas-L interaction could also play a role in apoptosis induction in T. cruzi-infected mice. Moreover, in vivo, the treatment of infected WT mice with the inducible nitric oxide synthase inhibitor aminoguanidine also led to decreased NO and apoptosis levels but not Fas expression, suggesting that IFN-γ modulates apoptosis induction by two independent and distinct mechanisms: induction of NO production and of Fas and Fas-L expression. We suggest that besides being of crucial importance in mediating resistance to experimentalT. cruzi infection, IFN-γ could participate in the immune response control through apoptosis modulation.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


2001 ◽  
Vol 28 (5-6) ◽  
pp. 459-462
Author(s):  
Pini Orbach ◽  
Charles E Wood ◽  
Maureen Keller-Wood
Keyword(s):  

2001 ◽  
Vol 120 (5) ◽  
pp. A684-A684
Author(s):  
I DANIELS ◽  
I MURRAY ◽  
W GODDARD ◽  
R LONG

2001 ◽  
Vol 120 (5) ◽  
pp. A461-A461
Author(s):  
S KUIKEN ◽  
G TYTGAT ◽  
G BOEKXSTAENS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document