Paraptotic Cell Death Induced by the Thioxotriazole Copper Complex A0: A New Tool to Kill Apoptosis-Resistant Cancer Cells

Author(s):  
Saverio Tardito ◽  
Claudio Isella ◽  
Enzo Medico ◽  
Luciano Marchiò ◽  
Maurizio Lanfranchi ◽  
...  
2017 ◽  
Vol 815 ◽  
pp. 147-155 ◽  
Author(s):  
Xin Chen ◽  
Xiaolan Zhang ◽  
Jinghong Chen ◽  
Qianqian Yang ◽  
Li Yang ◽  
...  

2017 ◽  
Vol 170 ◽  
pp. 8-16 ◽  
Author(s):  
Celeste Caruso Bavisotto ◽  
Dragana Nikolic ◽  
Antonella Marino Gammazza ◽  
Rosario Barone ◽  
Filippa Lo Cascio ◽  
...  

2013 ◽  
Vol 3 (3) ◽  
pp. 66 ◽  
Author(s):  
Vanessa Hörmann ◽  
Sivanesan Dhandayuthapani ◽  
James Kumi-Diaka ◽  
Appu Rathinavelu

Background: Prostate cancer is the second most common cancer in American men. The development of alternative preventative and/or treatment options utilizing a combination of phytochemicals and chemotherapeutic drugs could be an attractive alternative compared to conventional carcinoma treatments. Genistein isoflavone is the primary dietary phytochemical found in soy and has demonstrated anti-tumor activities in LNCaP prostate cancer cells. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy for secondary treatment of lung, ovarian and cervical cancers. The purpose of this study was to detail the potential activation of the intrinsic apoptotic pathway in LNCaP prostate cancer cells through genistein-topotecan combination treatments. Methods: LNCaP cells were cultured in complete RPMI medium in a monolayer (70-80% confluency) at 37ºC and 5% CO2. Treatment consisted of single and combination groups of genistein and topotecan for 24 hours. The treated cells were assayed for i) growth inhibition through trypan blue exclusion assay and microphotography, ii) classification of cellular death through acridine/ ethidium bromide fluorescent staining, and iii) activation of the intrinsic apoptotic pathway through Jc-1: mitochondrial membrane potential assay, cytochrome c release and Bcl-2 protein expression.Results: The overall data indicated that genistein-topotecan combination was significantly more efficacious in reducing the prostate carcinoma’s viability compared to the single treatment options. In all treatment groups, cell death occurred primarily through the activation of the intrinsic apoptotic pathway.Conclusion: The combination of topotecan and genistein has the potential to lead to treatment options with equal therapeutic efficiency as traditional chemo- and radiation therapies, but lower cell cytotoxicity and fewer side effects in patients. Key words: topotecan; genistein; intrinsic apoptotic cell death


2020 ◽  
Vol 173 ◽  
pp. 113724 ◽  
Author(s):  
Damu Sunilkumar ◽  
G. Drishya ◽  
Aneesh Chandrasekharan ◽  
Sanu K. Shaji ◽  
Chinchu Bose ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e31761 ◽  
Author(s):  
Marianna Halasi ◽  
Andrei L. Gartel

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 942
Author(s):  
Helen Yarimet Lorenzo-Anota ◽  
Diana G. Zarate-Triviño ◽  
Jorge Alberto Uribe-Echeverría ◽  
Andrea Ávila-Ávila ◽  
José Raúl Rangel-López ◽  
...  

(1) Background: Chitosan-coated gold nanoparticles (CH-AuNPs) have important theranostic applications in biomedical sciences, including cancer research. However, although cell cytotoxicity has been studied in cancerous cells, little is known about their effect in proliferating primary leukocytes. Here, we assessed the effect of CH-AuNPs and the implication of ROS on non-cancerous endothelial and fibroblast cell lines and in proliferative lymphoid cells. (2) Methods: The Turkevich method was used to synthetize gold nanoparticles. We tested cell viability, cell death, ROS production, and cell cycle in primary lymphoid cells, compared with non-cancer and cancer cell lines. Concanavalin A (ConA) or lipopolysaccharide (LPS) were used to induce proliferation on lymphoid cells. (3) Results: CH-AuNPs presented high cytotoxicity and ROS production against cancer cells compared to non-cancer cells; they also induced a different pattern of ROS production in peripheral blood mononuclear cells (PBMCs). No significant cell-death difference was found in PBMCs, splenic mononuclear cells, and bone marrow cells (BMC) with or without a proliferative stimuli. (4) Conclusions: Taken together, our results highlight the selectivity of CH-AuNPs to cancer cells, discarding a consistent cytotoxicity upon proliferative cells including endothelial, fibroblast, and lymphoid cells, and suggest their application in cancer treatment without affecting immune cells.


Sign in / Sign up

Export Citation Format

Share Document