A Zinc—Potassium Continuum in Neuronal Apoptosis

2009 ◽  
pp. 97-115 ◽  
Author(s):  
Patrick Redman ◽  
Megan Knoch ◽  
Elias Aizenman
Keyword(s):  
2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
Y Hu ◽  
L Jiang ◽  
X Li
Keyword(s):  

2018 ◽  
Author(s):  
Ying Li ◽  
Yilin Yang ◽  
Yunpeng Zhao ◽  
Jingmin Zhang ◽  
Baolin Liu ◽  
...  

2019 ◽  
Author(s):  
Fan-Qi Kong ◽  
Shu-Jie Zhao ◽  
Peng Sun ◽  
Hao Liu ◽  
Jian Jie ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiangli Yan ◽  
Aiming Yu ◽  
Haozhen Zheng ◽  
Shengxin Wang ◽  
Yingying He ◽  
...  

Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.


2020 ◽  
Vol 11 (2) ◽  
pp. 1729-1739 ◽  
Author(s):  
Hongxia Che ◽  
Lingyu Zhang ◽  
Lin Ding ◽  
Wancui Xie ◽  
Xiaoming Jiang ◽  
...  

Our previous study showed that EPA-enriched ethanolamine plasmalogen (EPA-pPE) exerted more significant effects than EPA-enriched phosphatidylethanolamine (EPA-PE) in improving learning and memory deficit.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052098210
Author(s):  
Quan Wang ◽  
Jingcong Luo ◽  
Ruiqiang Sun ◽  
Jia Liu

Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.


2021 ◽  
pp. 1-9
Author(s):  
Qinhan Hou ◽  
Hongmou Chen ◽  
Quan Liu ◽  
Xianlei Yan

Traumatic brain injury (TBI) can induce neuronal apoptosis and neuroinflammation, resulting in substantial neuronal damage and behavioral disorders. Fibroblast growth factors (FGFs) have been shown to be critical mediators in tissue repair. However, the role of FGF10 in experimental TBI remains unknown. In this study, mice with TBI were established via weight-loss model and validated by increase of modified neurological severity scores (mNSS) and brain water content. Secondly, FGF10 levels were elevated in mice after TBI, whereas intraventricular injection of Ad-FGF10 decreased mNSS score and brain water content, indicating the remittance of neurological deficit and cerebral edema in TBI mice. In addition, neuronal damage could also be ameliorated by stereotactic injection of Ad-FGF10. Overexpression of FGF10 increased protein expression of Bcl-2, while it decreased Bax and cleaved caspase-3/PARP, and improved neuronal apoptosis in TBI mice. In addition, Ad-FGF10 relieved neuroinflammation induced by TBI and significantly reduced the level of interleukin 1β/6, tumor necrosis factor α, and monocyte chemoattractant protein-1. Moreover, Ad-FGF10 injection decreased the protein expression level of Toll-like receptor 4 (TLR4), MyD88, and phosphorylation of NF-κB (p-NF-κB), suggesting the inactivation of the TLR4/MyD88/NF-κB pathway. In conclusion, overexpression of FGF10 could ameliorate neurological deficit, neuronal apoptosis, and neuroinflammation through inhibition of the TLR4/MyD88/NF-κB pathway, providing a potential therapeutic strategy for brain injury in the future.


Sign in / Sign up

Export Citation Format

Share Document