EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo

2020 ◽  
Vol 11 (2) ◽  
pp. 1729-1739 ◽  
Author(s):  
Hongxia Che ◽  
Lingyu Zhang ◽  
Lin Ding ◽  
Wancui Xie ◽  
Xiaoming Jiang ◽  
...  

Our previous study showed that EPA-enriched ethanolamine plasmalogen (EPA-pPE) exerted more significant effects than EPA-enriched phosphatidylethanolamine (EPA-PE) in improving learning and memory deficit.

2018 ◽  
Vol 49 (3) ◽  
pp. 1105-1114 ◽  
Author(s):  
Xiaojie Wei ◽  
Xiaohui Xu ◽  
Zhenfeng Chen ◽  
Tao Liang ◽  
Qingwei Wen ◽  
...  

Background/Aims: The roots of Averrhoa carambola L. (Oxalidaceae) have long been used as a traditional Chinese medicine for the treatment of headaches, vomiting, coughing and hangovers. 2-dodecyl-6-methoxycyclohexa-2, 5-1, 4-dione (DMDD) has been isolated from A. carambola L. roots, and this study was carried out to investigate the potential beneficial effects of DMDD on neuron apoptosis and memory deficits in Alzheimer's disease. Methods: The effects of a DMDD on learning and memory in APP/PS1 transgenic AD mice in vivo were investigated via Morris water maze and Y-type electric maze tests. In vitro, Cell viability was assessed by CCK-8. Apoptosis was assessed by Annexin V-FITC/PI flow cytometry assay, and transmission electron microscopy assay. Relative quantitative real-time PCR and Western blot were used to determine the expressions of genes and proteins. Results: The spatial learning and memory deficit, fear memory deficit, as well as apoptosis and loss of neuron in hippocampal area of APP/PS1 mice were reversed by DMDD in APP/PS1 transgenic AD mice. DMDD protected against the Aβ1-42-induced apoptosis, loss of mitochondria membrane potential, induction of pro-apoptotic Bcl-2 family protein Bax, reduction of anti-apoptotic Bcl-2 family proteins Bcl-2, and activation of Caspase-3, and -9 in PC-12 cells. The Bcl-2/Bax ratio was also increased in DMDD-pretreated PC-12 cells in vitro and APP/PS1 mice in vivo. Conclusion: DMDD has potential benefit on treating learning and memory deficit in APP/PS1 transgenic AD mice, and its effects may be associated with reversing the apoptosis of neuron via inhibiting Bax/Bcl-2 mediated mitochondrial membrane potential loss.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pengfei Liu ◽  
Jing Yuan ◽  
Yetong Feng ◽  
Xin Chen ◽  
Guangsuo Wang ◽  
...  

AbstractFerroptosis is a novel type of programmed cell death, which is different from apoptosis and autophagic cell death. Recently, ferroptosis has been indicated to contribute to the in vitro neurotoxicity induced by isoflurane, which is one of the most common anesthetics in clinic. However, the in vivo position of ferroptosis in isoflurane-induced neurotoxicity as well as learning and memory impairment remains unclear. In this study, we mainly explored the relationship between ferroptosis and isoflurane-induced learning and memory, as well as the therapeutic methods in mouse model. Our results indicated that isoflurane induced the ferroptosis in a dose-dependent and time-dependent manner in hippocampus, the organ related with learning and memory ability. In addition, the activity of cytochrome c oxidase/Complex IV in mitochondrial electron transport chain (ETC) was increased by isoflurane, which might further contributed to cysteine deprivation-induced ferroptosis caused by isoflurane exposure. More importantly, isoflurane-induced ferroptosis could be rescued by both ferroptosis inhibitor (ferrostatin-1) and mitochondria activator (dimethyl fumarate), which also showed effective therapeutic action against isoflurane-induced learning and memory impairment. Taken together, our data indicate the close association among ferroptosis, mitochondria and isoflurane, and provide a novel insight into the therapy mode against isoflurane-induced learning and memory impairment.


2016 ◽  
Vol 58 (2) ◽  
pp. 114-121 ◽  
Author(s):  
Nozomi Kaneai ◽  
Kazumi Sumitani ◽  
Koji Fukui ◽  
Taisuke Koike ◽  
Hirokatsu Takatsu ◽  
...  

2015 ◽  
Vol 35 (9) ◽  
pp. 1435-1444 ◽  
Author(s):  
Tingting Dong ◽  
Qi Zhang ◽  
Michael R Hamblin ◽  
Mei X Wu

Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced adenosine triphosphate generation, and increased formation of reactive oxygen species and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). Low-level light illumination sustained the mitochondrial membrane potential, constrained cytochrome c leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas other treatment displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by combination treatment, in marked contrast to the severe loss of hippocampal tissue because of secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissue–like injured brain.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Xinjing Liu ◽  
Ruiyao Hu ◽  
Lulu Pei ◽  
Yuming Xu ◽  
Bo Song

Background: The interleukin (IL)-33 could promote proliferation of regulatory T lymphocytes (Tregs) which are negatively related with brain damage after ischemic stroke. How IL-33 works on Tregs after stroke is unclear. The purpose of this study was to investigate the role of IL-33 for Tregs-mediated neuroprotection and further expounded the mechanisms of protection in mice. Methods: In vitro study, primary mice neuronal cells were subjected to 3h oxygen-glucose deprivation (OGD). The vehicle or drug conditioned Tregs were applied to neurons at the time of induction of hypoxia respectively. Neuronal apoptosis, Tregs related cytokines were measured by MTT assay, Western blotting and enzyme-linked immune-sorbent assay (ELISA). In vivo study, Tregs were depleted by intraperitoneal administration of anti-CD25Ab. Intraperitoneal injection of IL-33 immediately post 60 min transient middle cerebral artery occlusion (tMCAO) modeling. The neurological function test at days 1, 3, 5, 7 and 14 after tMCAO. Infarct volume, Brain edema, cell death, percentage of Tregs and related cytokines were respectively measured by 2,3,5-triphenyltetrazolium chloride or MAP2 staining, dry-wet method, TUNEL staining, flow cytometry and immunofluorescence, Western blotting and ELISA. Results: The supernatant of IL-33-treated Tregs reduced neuronal apoptosis in the OGD model meanwhile elevated the production of Tregs related cytokines IL-10, IL-35 and TGF- β in vitro. Intraperitoneal administration of IL-33 significantly reduced infarct volume and stroke-induced cell death and improved sensorimotor functions. Notably, the protective effect of IL-33 was abolished in mice depleted of Tregs. IL-33 increased CD4+CD25+Foxp3+ Tregs in spleens, blood, and brain in vivo. Yet, ST2 blocking muted these IL-33 activities. Mechanistically, the protection of IL-33 was associated with reduced apoptosis protein and production of Tregs related cytokine. Conclusions: This study elucidated that IL-33 afforded neuroprotection against ischemic brain injury by enhancing ST2-dependent regulatory T-cell expansion and activation, which suggested a promising immune modulatory target for the treatment of stroke.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Kui Chen ◽  
Liang Zhu ◽  
Lin Guo ◽  
Yuan-Bo Pan ◽  
Dong-Fu Feng

Abstract Maf1, a general transcriptional regulator and mTOR downstream effector, is highly expressed in the hippocampus and cortex, but the function of Maf1 in neurons is not well elucidated. Here, we first demonstrate that Maf1 plays a central role in the inhibition of dendritic morphogenesis and the growth of dendritic spines both in vitro and in vivo. Furthermore, Maf1 downregulation paradoxically leads to activation of AKT-mTOR signaling, which is mediated by decreased PTEN expression. Moreover, we confirmed that Maf1 could regulate the activity of PTEN promoter by luciferase reporter assay, and proved that Maf1 could bind to the promoter of PTEN by ChIP-PCR experiment. We also demonstrate that expression of Maf1 in the hippocampus affects learning and memory in mice. Taken together, we show for the first time that Maf1 inhibits dendritic morphogenesis and the growth of dendritic spines through AKT-mTOR signaling by increasing PTEN expression.


Sign in / Sign up

Export Citation Format

Share Document