Functional Characterization of Water-Deficit Stress Responsive Genes Using RNAi

Author(s):  
Muthappa Senthil-Kumar ◽  
Makarla Udayakumar ◽  
Kirankumar S. Mysore
2010 ◽  
Vol 48 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Muthappa Senthil-Kumar ◽  
Ramanna Hema ◽  
Thumu Rao Suryachandra ◽  
H.V. Ramegowda ◽  
Ramaswamy Gopalakrishna ◽  
...  

2021 ◽  
Author(s):  
Fatemeh Khakdan ◽  
Zahra Shirazi ◽  
Mojtaba Ranjbar

Abstract Methyl chavicol and methyl eugenol are important phenylpropanoid compounds previously purified from basil. These compounds are significantly enhanced by the water deficit stress-dependent mechanism. Here, for the first time, pObCVOMT and pObEOMT promoters were extracted by the genome walking method. They were then cloned into the upstream of the β-glucuronidase (GUS) reporter gene to identify the pattern of GUS water deficit stress-specific expression. Histochemical GUS assays showed in transgenic tobacco lines bearing the GUS gene driven by pObCVOMT and pObEOMT promoters, GUS was strongly expressed under water deficit stress. qRT-PCR analysis of pObCVOMT and pObEOMT transgenic plants confirmed the histochemical assays, indicating that the GUS expression is also significantly induced and up-regulated by increasing density of water deficit stress. This indicates these promoters are able to drive inducible expression. The cis-acting elements analysis showed that the pObCVOMT and pObEOMT promoters contained dehydration or water deficit-related transcriptional control elements.


Planta ◽  
2006 ◽  
Vol 225 (3) ◽  
pp. 523-539 ◽  
Author(s):  
M. Senthil-Kumar ◽  
Geetha Govind ◽  
Li Kang ◽  
Kirankumar S. Mysore ◽  
M. Udayakumar

2017 ◽  
Author(s):  
Tyson C. C. Kerr ◽  
Haggag Abdel-Mageed ◽  
MiYoung Kang ◽  
Dakota Cryer ◽  
Randy D. Allen

AbstractThe AREB/ABF bZIP transcription factors play a pivotal role in abscisic acid-dependent abiotic stress-responsive gene expression. Despite the perennial damage and reduced productivity that result from water-deficit and unpredictable early season temperature fluctuations, these critical genes have not been previously examined in upland cotton (Gossypium hirsutum). Here, we report the isolation of the G. hirsutum ABF homologs, characterization of their expression patterns in response to abiotic stress treatments, and examination of their functions through heterologous ectopic expression in Arabidopsis. As expected for an allotetraploid, G. hirsutum ABF homologs are present in the genome as homeologous pairs. These genes are differentially expressed, both among the homologs and within the homeologous pairs, in response to exogenous abscisic acid (ABA) application, dehydration, and chilling temperatures. Furthermore, heterologous ectopic expression of many of the G. hirsutum ABF genes in Arabidopsis conferred increased tolerance to water deficit and osmotic stress, as well as cold tolerance, in a gene specific manner. These results indicate the G. hirsutum ABF homologs are functional in Arabidopsis and, as in other species, are likely to play an essential role in the abiotic stress response.HighlightThe Gossypium hirsutum ABF homeologs are differentially expressed in response to abiotic stress, and their ectopic expression in Arabidopsis can confer increased water deficit tolerance.


2022 ◽  
Vol 5 ◽  
Author(s):  
Gabriela Cabrales-Orona ◽  
Norma Martínez-Gallardo ◽  
John Paul Délano-Frier

The functional characterization of an Amaranthus hypochondriacus Natterin-4-Like-1 gene (AhN4L-1) coding for an unknown function protein characterized by the presence of an aerolysin-like pore-forming domain in addition to two amaranthin-like agglutinin domains is herewith described. Natterin and nattering-like proteins have been amply described in the animal kingdom. However, the role of nattering-like proteins in plants is practically unknown. The results described in this study, obtained from gene expression data in grain amaranth and from AhN4L-1-overexpressing Arabidopsis thaliana plants indicated that this gene was strongly induced by several biotic and abiotic conditions in grain amaranth, whereas data obtained from the overexpressing Arabidopsis plants further supported the defensive function of this gene, mostly against bacterial and fungal plant pathogens. GUS and GFP AhN4L-1 localization in roots tips, leaf stomata, stamens and pistils also suggested a defensive function in these organs, although its participation in flowering processes, such as self-incompatibility and abscission, is also possible. However, contrary to expectations, the overexpression of this gene negatively affected the vegetative and reproductive growth of the transgenic plants, which also showed no increased tolerance to salinity and water-deficit stress. The latter despite the maintenance of significantly higher chlorophyll levels and photosynthetic parameters under intense salinity stress. These results are discussed in the context of the physiological roles known to be played by related lectins and AB proteins in plants.


2021 ◽  
Vol 22 (5) ◽  
pp. 2314
Author(s):  
Ines Yacoubi ◽  
Karama Hamdi ◽  
Patrick Fourquet ◽  
Christophe Bignon ◽  
Sonia Longhi

The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS). Bioinformatics analysis shows that they are both consistently predicted to be intrinsically disordered. Hydrodynamic and circular dichroism analysis indicate that both domains are largely disordered but belong to different structural classes, with HvABA-WDS and TtABA-WDS adopting a PreMolten Globule-like (PMG-like) and a Random Coil-like (RC-like) conformation, respectively. In the presence of the secondary structure stabilizer trifluoroethanol (TFE) or of increasing glycerol concentrations, which mimics dehydration, the two domains acquire an α-helical structure. Interestingly, both domains are able to prevent heat- and dehydration-induced inactivation of the enzyme lactate dehydrogenase (LDH). Furthermore, heterologous expression of TtABA-WDS and HvABA-WDS in the yeast Saccharomyces cerevisiae improves its tolerance to salt, heat and cold stresses. Taken together our results converge to show that the ABA-WDS domain is an intrinsically disordered functional domain whose conformational plasticity could be instrumental to support the versatile functions attributed to the ASR family, including its role in abiotic stress tolerance. Finally, and after validation in the plant system, this domain could be used to improve crop tolerance to abiotic stresses.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 415A-415
Author(s):  
Rajeev Arora ◽  
Chon-Chong Lim

Many reports have shown the accumulation of specific proteins associated with cold acclimation in plants. However, there is a scarcity of data on the physiological and/or biochemical changes associated with deacclimation process. This study was initiated to determine protein changes specifically associated with deacclimation in Rhododendron. Current-year leaves were collected from three Rhododendron cultivars (`Chionoides', `Grumpy Yellow', and `Vulcanís Flame'; ≈4-year-old rooted cuttings) during natural non-acclimated (June), cold-acclimated (January), and deacclimated (May) state. Leaf freezing tolerance was evaluated using controlled freezing protocol (Lim et al. 1998, J. Amer. Soc. Hort. Sci. 123:246–252). Seasonal SDS-PAGE profiles exhibited a distinct accumulation of 27 kDa protein in deacclimated and nonacclimated tissues, but this protein was essentially undetectable in cold acclimated tissues of all three cultivars. Further characterization of this polypeptide, labeled as RhDAP27 (for rhododendron deacclimation protein), revealed that it has an iso-electric point of 6.5, has a compositional bias for Glu/Gln (13.9%), His (11.4%), Gly (11%), Ala (10%), Lys (8.3%), and Asp/Asn (8.1%)—hydrophilic amino acids constitutedabout 54% of the total amino acids while 40% were nonpolar, aliphatic amino acids (Gly, Ala, Val, Leu, Ile, Pro) and only 6% were aromatic amino acids (Phe and Tyr). Micro-sequencing of the four peptides produced by partial cleavage of RhDAP27 revealed a striking homology of RhDAP27 with two proteins (from Mesembryanthemum crystallinum and Pinus taeda) that belong to the family of ABA stress ripening/water deficit stress inducible proteins.


2016 ◽  
Vol 43 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Maritim Tony ◽  
Kamunya Samson ◽  
Mwendia Charles ◽  
Mireji Paul ◽  
Muoki Richard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document