scholarly journals Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family

2021 ◽  
Vol 22 (5) ◽  
pp. 2314
Author(s):  
Ines Yacoubi ◽  
Karama Hamdi ◽  
Patrick Fourquet ◽  
Christophe Bignon ◽  
Sonia Longhi

The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS). Bioinformatics analysis shows that they are both consistently predicted to be intrinsically disordered. Hydrodynamic and circular dichroism analysis indicate that both domains are largely disordered but belong to different structural classes, with HvABA-WDS and TtABA-WDS adopting a PreMolten Globule-like (PMG-like) and a Random Coil-like (RC-like) conformation, respectively. In the presence of the secondary structure stabilizer trifluoroethanol (TFE) or of increasing glycerol concentrations, which mimics dehydration, the two domains acquire an α-helical structure. Interestingly, both domains are able to prevent heat- and dehydration-induced inactivation of the enzyme lactate dehydrogenase (LDH). Furthermore, heterologous expression of TtABA-WDS and HvABA-WDS in the yeast Saccharomyces cerevisiae improves its tolerance to salt, heat and cold stresses. Taken together our results converge to show that the ABA-WDS domain is an intrinsically disordered functional domain whose conformational plasticity could be instrumental to support the versatile functions attributed to the ASR family, including its role in abiotic stress tolerance. Finally, and after validation in the plant system, this domain could be used to improve crop tolerance to abiotic stresses.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


2010 ◽  
Vol 48 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Muthappa Senthil-Kumar ◽  
Ramanna Hema ◽  
Thumu Rao Suryachandra ◽  
H.V. Ramegowda ◽  
Ramaswamy Gopalakrishna ◽  
...  

2021 ◽  
Author(s):  
Fatemeh Khakdan ◽  
Zahra Shirazi ◽  
Mojtaba Ranjbar

Abstract Methyl chavicol and methyl eugenol are important phenylpropanoid compounds previously purified from basil. These compounds are significantly enhanced by the water deficit stress-dependent mechanism. Here, for the first time, pObCVOMT and pObEOMT promoters were extracted by the genome walking method. They were then cloned into the upstream of the β-glucuronidase (GUS) reporter gene to identify the pattern of GUS water deficit stress-specific expression. Histochemical GUS assays showed in transgenic tobacco lines bearing the GUS gene driven by pObCVOMT and pObEOMT promoters, GUS was strongly expressed under water deficit stress. qRT-PCR analysis of pObCVOMT and pObEOMT transgenic plants confirmed the histochemical assays, indicating that the GUS expression is also significantly induced and up-regulated by increasing density of water deficit stress. This indicates these promoters are able to drive inducible expression. The cis-acting elements analysis showed that the pObCVOMT and pObEOMT promoters contained dehydration or water deficit-related transcriptional control elements.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yasmin Vasques Berchembrock ◽  
Flávia Barbosa Silva Botelho ◽  
Vibha Srivastava

The ERECTA (ER) family of genes, encoding leucine-rich repeat receptor-like kinase (RLK), influences complex morphological and physiological aspects of plants. Modulation of ER signaling leads to abiotic stress tolerance in diverse plant species. However, whether the gain in stress tolerance is accompanied with desirable agronomic performance is not clearly known. In this study, soybean plants potentially suppressed in ER signaling were evaluated for the phenotypic performance and drought response in the greenhouse. These plants expressed a dominant-negative Arabidopsis thaliana ER (AtER) called ΔKinase to suppress ER signaling, which has previously been linked with the tolerance to water deficit, a major limiting factor for plant growth and development, directly compromising agricultural production. With the aim to select agronomically superior plants as stress-tolerant lines, transgenic soybean plants were subjected to phenotypic selection and subsequently to water stress analysis. This study found a strong inverse correlation of ΔKinase expression with the agronomic performance of soybean plants, indicating detrimental effects of expressing ΔKinase that presumably led to the suppression of ER signaling. Two lines were identified that showed favorable agronomic traits and expression of ΔKinase gene, although at lower levels compared with the rest of the transgenic lines. The drought stress analysis on the progenies of these lines, however, showed that these plants were more susceptible to water-deficit stress as compared with the non-transgenic controls. The selected transgenic plants showed greater stomata density and conductance, which potentially led to higher biomass, and consequently more water demand and greater susceptibility to the periods of water withholding.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1091 ◽  
Author(s):  
Atiyeh Mahdavi ◽  
Parviz Moradi ◽  
Andrea Mastinu

Thyme (Thymus spp.) volatiles predominantly consisting of monoterpenes and sesquiterpenes, serve as antimicrobial, antiseptic and antioxidant in phytomedicine. They also play a key role in plants as secondary metabolites via their potential role against herbivores, attracting pollinators and abiotic stress tolerance. Plant volatiles are affected by different environmental factors including drought. Here, the effect of prolonged water deficit stress on volatile composition was studied on the sensitive and tolerant thyme plant cultivars (T. vulgaris Var. Wagner and T. vulgaris Var. Varico3, respectively). Volatile sampling along with morpho–physiological parameters such as soil moisture, water potential, shoot dry weight, photosynthetic rate and water content measurements were performed on one-month-old plants subsequent to water withholding at 4-day intervals until the plants wilted. The tolerant and sensitive plants had clearly different responses at physiological and volatile levels. The most stress-induced changes on the plants’ physiological traits occurred in the photosynthetic rates, where the tolerant plants maintained their photosynthesis similar to the control ones until the 8th day of the drought stress period. While the analysis of the volatile compounds (VOCs) of the sensitive thyme plants displayed the same pattern for almost all of them, in the tolerant plants, the comparison of the pattern of changes in the tolerant plants revealed that the changes could be classified into three separate groups. Our experimental and theoretical studies totally revealed that the most determinant compounds involved in drought stress adaptation included α-phellandrene, O-cymene, γ-terpinene and β-caryophyelene. Overall, it can be concluded that in the sensitive plants trade-off between growth and defense, the tolerant ones simultaneously activate their stress response mechanism and continue their growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
Ratan Tiwari ◽  
Gyanendra Pratap Singh

AbstractThe SnRK gene family is a key regulator that plays an important role in plant stress response by phosphorylating the target protein to regulate subsequent signaling pathways. This study was aimed to perform a genome-wide analysis of the SnRK gene family in wheat and the expression profiling of SnRKs in response to abiotic stresses. An in silico analysis identified 174 SnRK genes, which were then categorized into three subgroups (SnRK1/2/3) on the basis of phylogenetic analyses and domain types. The gene intron–exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication and synteny between the wheat and Arabidopsis genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. The result of cis-acting element analysis showed that there were abundant stress- and hormone-related cis-elements in the promoter regions of 129 SnRK genes. Furthermore, quantitative real-time PCR data revealed that heat, salt and drought treatments enhanced TaSnRK2.11 expression, suggesting that it might be a candidate gene for abiotic stress tolerance. We also identified eight microRNAs targeting 16 TaSnRK genes which are playing important role across abiotic stresses and regulation in different pathways. These findings will aid in the functional characterization of TaSnRK genes for further research.


2014 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Gader Ghaffari ◽  
Farhad Baghbani ◽  
Behnam Tahmasebpour

In order to group winter rapeseed cultivars according to evaluated traits, an experiment was conducted in the Research Greenhouse of Agriculture Faculty, University of Tabriz - IRAN. In the experiment were included 12 cultivars of winter rapeseed and 3 levels of water deficit stress. Gypsum blocks were used to monitor soil moisture. Water deficit stress was imposed from stem elongation to physiological maturity. According to the principal component analysis, five principal components were chosen with greater eigenvalue (more than 0.7) that are including 81.34% of the primeval variance of variables. The first component that explained the 48.02% of total variance had the high eigenvalue. The second component could justify about 13.64% of total variance and had positive association with leaf water potential and proline content and had negative relationship with leaf stomatal conductivity. The third, fourth and fifth components expressed around, 10.18, 4.83 and 4.68% of the total variance respectively. The third component had the high eigenvalue for plant dry weight. The fourth component put 1000-seed weight, seed yield, Silique per Plant and root dry weight against plant dry weight, chlorophyll fluorescence and leaf water potential. The fifth component had the high eigenvalue for root dry weight, root volume and 1000-seed weight.


Sign in / Sign up

Export Citation Format

Share Document