Class-Specific Effector Functions of Therapeutic Antibodies

Author(s):  
Virginie Pascal ◽  
Brice Laffleur ◽  
Michel Cogné
2011 ◽  
Vol 10 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Xu-Rong Jiang ◽  
An Song ◽  
Svetlana Bergelson ◽  
Thomas Arroll ◽  
Bhavin Parekh ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77412 ◽  
Author(s):  
Timothy Q. Crawford ◽  
Fredrick M. Hecht ◽  
Christopher D. Pilcher ◽  
Lishomwa C. Ndhlovu ◽  
Jason D. Barbour

Bioanalysis ◽  
2016 ◽  
Vol 8 (20) ◽  
pp. 2135-2145 ◽  
Author(s):  
Uwe Wessels ◽  
Alexander Poehler ◽  
Miriam Moheysen-Zadeh ◽  
Markus Zadak ◽  
Roland F Staack ◽  
...  

2021 ◽  
Author(s):  
Geraldine Nouailles ◽  
Emanuel Wyler ◽  
Peter Pennitz ◽  
Dylan Postmus ◽  
Daria Vladrimirova ◽  
...  

Abstract In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as model for moderate COVID-19, we conducted a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborated it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exerted the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells showed weak activation. Without evidence for productive infection, endothelial cells reacted, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies preceded viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters can thus identify cell type-specific effector functions, provide detailed insights into pathomechanisms of COVID-19, and inform therapeutic strategies.


2018 ◽  
Vol 119 ◽  
pp. 306-311 ◽  
Author(s):  
Marcela Helena Gambim Fonseca ◽  
Gilvan Pessoa Furtado ◽  
Marcus Rafael Lobo Bezerra ◽  
Larissa Queiroz Pontes ◽  
Carla Freire Celedonio Fernandes

2020 ◽  
Vol 21 (10) ◽  
pp. 3525 ◽  
Author(s):  
Nico M. Sievers ◽  
Jan Dörrie ◽  
Niels Schaft

When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adrian Elter ◽  
Desislava Yanakieva ◽  
David Fiebig ◽  
Kerstin Hallstein ◽  
Stefan Becker ◽  
...  

The interaction of the Fc region of therapeutic antibodies and antibody-drug conjugates with Fcγ receptors (FcγRs) can lead to unpredictable and severe side effects. Over the last decades several strategies have been developed to overcome this drawback, including extensive Fc- and glycoengineering and antibody isotype switching. However, these approaches result in permanently Fc-silenced antibody derivates which partially or completely lack antibody-mediated effector functions. Nevertheless, for a majority of antibody-based drugs, Fc-mediated effector functions, like antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP) as well as complement-dependent cytotoxicity (CDC), represent the most substantial modes of action. We argued that a new strategy combining the beneficial properties of Fc-silencing and controlled activation of effector functions can pave the way to potent antibody therapeutics, reducing the FcγRs-mediated off-target toxicity. We present a novel Fc-tamed antibody format, where the FcγR-binding sites of antibodies are blocked by anti-isotypic masking units, hindering the association of FcγR and complement component 1 (c1q) to the Fc domain. The masking units were genetically fused to trastuzumab, including a protease-addressable peptide-liker. Our Fc-tamed antibodies demonstrated completely abolished interaction to soluble high-affinity Fcγ-Receptor I and c1q. In reporter cell-based ADCC assays, our Fc-tamed antibodies exhibited a 2,700 to 7,100-fold reduction in activation, compared to trastuzumab. Upon demasking by a tumor-associated protease, the Fc-activated antibodies demonstrated restored FcγR-binding, c1q-binding and the ability to induce potent ADCC activation. Furthermore, cell killing assays using donor-derived NK cells were performed to validate the functionality of the Fc-tamed antibody variants. To our knowledge, this approach represents the first non-permanently Fc-silenced antibody, which can be re-activated by a tumor-associated protease, eventually extending the field of novel antibody formats.


Sign in / Sign up

Export Citation Format

Share Document