Determination of Protein Turnover Rates in the JAK/STAT Pathway Using a Radioactive Pulse-Chase Approach

Author(s):  
Anna Dittrich ◽  
Elmar Siewert ◽  
Fred Schaper
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1747
Author(s):  
Roya Yousefi ◽  
Kristina Jevdokimenko ◽  
Verena Kluever ◽  
David Pacheu-Grau ◽  
Eugenio F. Fornasiero

Protein homeostasis is an equilibrium of paramount importance that maintains cellular performance by preserving an efficient proteome. This equilibrium avoids the accumulation of potentially toxic proteins, which could lead to cellular stress and death. While the regulators of proteostasis are the machineries controlling protein production, folding and degradation, several other factors can influence this process. Here, we have considered two factors influencing protein turnover: the subcellular localization of a protein and its functional state. For this purpose, we used an imaging approach based on the pulse-labeling of 17 representative SNAP-tag constructs for measuring protein lifetimes. With this approach, we obtained precise measurements of protein turnover rates in several subcellular compartments. We also tested a selection of mutants modulating the function of three extensively studied proteins, the Ca2+ sensor calmodulin, the small GTPase Rab5a and the brain creatine kinase (CKB). Finally, we followed up on the increased lifetime observed for the constitutively active Rab5a (Q79L), and we found that its stabilization correlates with enlarged endosomes and increased interaction with membranes. Overall, our data reveal that both changes in protein localization and functional state are key modulators of protein turnover, and protein lifetime fluctuations can be considered to infer changes in cellular behavior.


Author(s):  
Mónica Fernández-Navarro ◽  
Juan Peragón ◽  
Victoria Amores ◽  
Manuel De La Higuera ◽  
José Antonio Lupiáñez

1989 ◽  
Vol 259 (3) ◽  
pp. 893-896 ◽  
Author(s):  
C E King ◽  
P T Hawkins ◽  
L R Stephens ◽  
R H Michell

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.


1993 ◽  
Vol 43 (5) ◽  
pp. 1156-1159 ◽  
Author(s):  
Robert May ◽  
Brian Logue ◽  
Byrad Edwards ◽  
Swati Patel

1994 ◽  
Vol 266 (4) ◽  
pp. C1028-C1036 ◽  
Author(s):  
S. C. Land ◽  
P. W. Hochachka

Hepatocytes from the western painted turtle (Chrysemys picta bellii) are capable of a coordinated metabolic suppression of 88% during 10 h of anoxia at 25 degrees C. The energy dependence and role of proteolysis in this suppression were assessed in labile ([3H]Phe-labeled) and stable ([14C]Phe-labeled) protein pools. During anoxia, labile protein half-lives increased from 24.7 +/- 3.3 to 34.4 +/- 3.7 h, with stable protein half-lives increasing from 55.6 +/- 3.4 to 109.6 +/- 7.4 h. The total anoxic mean proteolytic suppression for both pools was 36%. On the basis of inhibition of O2 consumption and lactate production rates by cycloheximide and emetine, normoxic ATP-dependent proteolysis required 11.1 +/- 1.7 mumol ATP.g-1.h-1 accounting for 21.8 +/- 1.4% of total cellular metabolism. Under anoxia this was suppressed by 93% to 0.73 +/- 0.43 mumol ATP.g-1.h-1. Summation of this with protein synthesis ATP turnover rates indicated that under anoxia 45% of total ATP turnover rate was directed toward protein turnover. Studies with inhibitors of energy metabolism indicated that the majority of energy dependence was found in the stable protein pool, with no significant inhibition occurring among the more labile proteins. We conclude that proteolysis is largely energy dependent under normoxia, whereas under anoxia there is a shift to a slower overall proteolytic rate that is largely energy independent and represents loss mostly from the labile protein pool.


1981 ◽  
Vol 1 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M Sameshima ◽  
S A Liebhaber ◽  
D Schlessinger

The turnover rates of 3H-labeled 18S ribosomal ribonucleic acid (RNA), 28S ribosomal RNA, transfer RNA, and total cytoplasmic RNA were very similar in growing WI-38 diploid fibroblasts. The rate of turnover was at least twofold greater when cell growth stopped due to cell confluence, 3H irradiation, or treatment with 20 mM NaN3 or 2 mM NaF. In contrast, the rate of total 3H-protein turnover was the same in growing and nongrowing cells. Both RNA and protein turnovers were accelerated at least twofold in WI-38 cells deprived of serum, and this increase in turnover was inhibited by NH4Cl. These results are consistent with two pathways for RNA turnover, one of them being nonlysosomal and the other being lysosome mediated (NH4Cl sensitive), as has been suggested for protein turnover. Also consistent with the notion of two pathways for RNA turnover were findings with I-cells, which are deficient for many lysosomal enzymes, and in which all RNA turnover was nonlysosomal (NH4Cl resistant).


2009 ◽  
Vol 25 (6) ◽  
pp. 665-669 ◽  
Author(s):  
Scott A. Parsons ◽  
Luke P. Shoo ◽  
Stephen E. Williams

Litter standing crop (LSC) is the quantity of plant detritus on the floor in forested environments. Knowledge of LSC is important in understanding many ecological phenomena. These include studies of litterfall, decomposition/litter turnover rates and nutrient cycling (Anderson et al. 1983, Dent et al. 2006), general plant performance (Benítez-Malvido & Kossmann-Ferraz 1999), other ecosystem processes such as the effects of fire (Odiwe & Muoghalu 2003) and fauna (Frith & Frith 1990, Giaretta et al. 1999, Levings & Windsor 1985). The determination of accurate annual average LSC data, may require monitoring over long periods due to seasonality and sometimes sporadic nature of litterfall and decomposition rates (Clark et al. 2001). Furthermore, the effects of topography and water movement create the need for both representative site selection and sufficient spatial coverage.


Sign in / Sign up

Export Citation Format

Share Document