Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis

1994 ◽  
Vol 266 (4) ◽  
pp. C1028-C1036 ◽  
Author(s):  
S. C. Land ◽  
P. W. Hochachka

Hepatocytes from the western painted turtle (Chrysemys picta bellii) are capable of a coordinated metabolic suppression of 88% during 10 h of anoxia at 25 degrees C. The energy dependence and role of proteolysis in this suppression were assessed in labile ([3H]Phe-labeled) and stable ([14C]Phe-labeled) protein pools. During anoxia, labile protein half-lives increased from 24.7 +/- 3.3 to 34.4 +/- 3.7 h, with stable protein half-lives increasing from 55.6 +/- 3.4 to 109.6 +/- 7.4 h. The total anoxic mean proteolytic suppression for both pools was 36%. On the basis of inhibition of O2 consumption and lactate production rates by cycloheximide and emetine, normoxic ATP-dependent proteolysis required 11.1 +/- 1.7 mumol ATP.g-1.h-1 accounting for 21.8 +/- 1.4% of total cellular metabolism. Under anoxia this was suppressed by 93% to 0.73 +/- 0.43 mumol ATP.g-1.h-1. Summation of this with protein synthesis ATP turnover rates indicated that under anoxia 45% of total ATP turnover rate was directed toward protein turnover. Studies with inhibitors of energy metabolism indicated that the majority of energy dependence was found in the stable protein pool, with no significant inhibition occurring among the more labile proteins. We conclude that proteolysis is largely energy dependent under normoxia, whereas under anoxia there is a shift to a slower overall proteolytic rate that is largely energy independent and represents loss mostly from the labile protein pool.

1993 ◽  
Vol 265 (1) ◽  
pp. R41-R48 ◽  
Author(s):  
S. C. Land ◽  
L. T. Buck ◽  
P. W. Hochachka

Hepatocytes from the western painted turtle (Chrysemys picta bellii) display a profound metabolic suppression under anoxia. Fractional rates of protein synthesis fell by 92% during 12 h anoxia at 25 degrees C and were indistinguishable from the rate obtained with cycloheximide. Normoxic recovery saw protein synthesis increase to 160% of control values and return to normal after 2 h. The GTP-to-GDP ratio, implicated in the control of translation, fell threefold during anoxia. Purine nucleotide phosphate profiles suggest that this change occurs through increasing concentrations of ADP and GDP, with concentrations of ATP and GTP and total purines remaining constant. The normoxic cost for protein synthesis was calculated at 47.6 +/- 6.8 mmol ATP/g protein. Normoxic protein synthesis accounted for 36% of overall ATP turnover rates, close to the extent of O2 consumption inhibitable by cycloheximide (28%). Under anoxia, the proportion of ATP turnover utilized by protein synthesis did not change significantly. ATP turnover rates for urea synthesis reflected a similar pattern, falling 72% under anoxia. These results reflect the cell's ability to suppress protein synthesis under anoxia in a manner that is coordinated with the reduction in total metabolic rate.


1993 ◽  
Vol 265 (1) ◽  
pp. R49-R56 ◽  
Author(s):  
L. T. Buck ◽  
S. C. Land ◽  
P. W. Hochachka

Chrysemys picta bellii is well known for its ability to survive extended anoxic periods and has been widely used as a model system to study anoxic metabolism. Described here is a method for the isolation of anoxia-tolerant hepatocytes from this species. Freshly isolated hepatocytes were determined to be viable based on trypan blue exclusion, gluconeogenic capacity from [14C]lactate, responsiveness to epinephrine and glucagon, and maintenance of cellular adenylate concentrations. Under anoxic conditions for 10 h there was no significant increase in cell staining and no decrease in cellular ATP concentration. Furthermore, the addition of cyanide at the 5-h mark did not result in any significant differences in these parameters; however, iodoacetate added at this time caused trypan blue staining to increase and ATP concentrations to fall. The rate of glucose production from the cells was threefold greater under anoxic than normoxic conditions, underscoring the important role of the liver in supplying substrate during anoxia. From the rate of O2 consumption and rate of lactate production under anaerobic conditions, ATP turnover rates were calculated to be 68.4 +/- 7.2 and 6.5 +/- 0.43 mumol ATP.g-1.h-1, respectively; this corresponds to a 90% decrease in metabolic rate during anoxia. Within a cellular system such as this the more complex regulatory mechanisms involved in a large coordinated reduction in metabolism can be probed.


2021 ◽  
Author(s):  
Dean E Hammond ◽  
Deborah M Simpson ◽  
Catarina Franco ◽  
Marina Wright Muelas ◽  
John Waters ◽  
...  

Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1747
Author(s):  
Roya Yousefi ◽  
Kristina Jevdokimenko ◽  
Verena Kluever ◽  
David Pacheu-Grau ◽  
Eugenio F. Fornasiero

Protein homeostasis is an equilibrium of paramount importance that maintains cellular performance by preserving an efficient proteome. This equilibrium avoids the accumulation of potentially toxic proteins, which could lead to cellular stress and death. While the regulators of proteostasis are the machineries controlling protein production, folding and degradation, several other factors can influence this process. Here, we have considered two factors influencing protein turnover: the subcellular localization of a protein and its functional state. For this purpose, we used an imaging approach based on the pulse-labeling of 17 representative SNAP-tag constructs for measuring protein lifetimes. With this approach, we obtained precise measurements of protein turnover rates in several subcellular compartments. We also tested a selection of mutants modulating the function of three extensively studied proteins, the Ca2+ sensor calmodulin, the small GTPase Rab5a and the brain creatine kinase (CKB). Finally, we followed up on the increased lifetime observed for the constitutively active Rab5a (Q79L), and we found that its stabilization correlates with enlarged endosomes and increased interaction with membranes. Overall, our data reveal that both changes in protein localization and functional state are key modulators of protein turnover, and protein lifetime fluctuations can be considered to infer changes in cellular behavior.


1992 ◽  
Vol 73 (5) ◽  
pp. 1697-1703 ◽  
Author(s):  
P. W. Hochachka ◽  
G. O. Matheson

It has long been appreciated that rates of ATP utilization and production need to be extremely closely balanced. To put it in molecular rather than molar terms, in human muscle engaged in a 15-min work protocol, approximately 3.3 x 10(20) ATP/g are used and resynthesized at approximately 100 times the resting cycling rates before fatigue, during which time only a 20–25% decrease in the ATP pool is sustained. Analysis of how such remarkable regulatory precision is achieved suggests that in resting muscle myosin behaves as a latent catalyst whose full catalytic potential 1) is realized with the arrival of an activator signal (Ca2+) and 2) is tempered with reaction products; such proactive control, initiated at ATP utilization, sets the required flux through ATP-producing pathways. For any given enzyme step in ATP-producing pathways, reaction velocity (v) becomes the independent parameter, with substrate concentration ([S], the dependent parameter) being adjusted accordingly. Because the dynamic range for muscles (change from resting to maximum ATP turnover rates) can exceed 100-fold, in many studies of working muscle the percent change in ATP turnover rate exceeds (sometimes by very large margins) the percent change in [S]. These observations are not easily explained by current metabolic regulation models but are consistent with pathway enzymes behaving as latent catalysts in resting muscle. In this view, the unmasking of such latent catalytic potential is the main explanation for how large changes in v can be achieved with modest (sometimes immeasurable) changes in [S].(ABSTRACT TRUNCATED AT 250 WORDS)


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1372 ◽  
Author(s):  
Renae J. Stefanetti ◽  
Sarah Voisin ◽  
Aaron Russell ◽  
Séverine Lamon

The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death. FOXO3 is one of the rare genes that have been consistently linked to longevity in in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle.


1983 ◽  
Vol 210 (1) ◽  
pp. 63-71 ◽  
Author(s):  
J S Crie ◽  
J M Ord ◽  
J R Wakeland ◽  
K Wildenthal

1. The effect of colchicine (2.5 microM) on cardiac protein turnover was tested with foetal mouse hearts in organ culture. 2. Colchicine had no effect on protein synthesis, but inhibited total protein degradation by 12-18%. Lumicolchicine, which lacks colchicine's ability to disaggregate microtubules, but shares its non-specific effects, did not alter protein degradation. 3. The colchicine-induced inhibition of protein degradation was accompanied by significant changes in cardiac lysosomal enzyme activities and distribution. 4. Colchicine inhibited the degradation of organellar proteins, including mitochondrial cytochromes, more than that of cytosolic proteins. 5. Colchicine decreased the rate of myosin degradation and the rate of proteolysis of the total protein pool to a similar extent. Since the regulation of myosin degradation does not involve lysosomes, this suggests that colchicine affects non-lysosomal as well as lysosomal pathways. 6. Release of branched-chain amino acids from colchicine-treated hearts was disproportionately decreased, suggesting that colchicine increased their metabolism. 7. It is concluded that colchicine, via its actions on microtubules, exerts important inhibitory effects on cardiac proteolysis. Colchicine is especially inhibitory to the degradation of organellar proteins, including mitochondrial cytochromes. Its inhibitory effects may be mediated in part via lysosomal mechanisms, but non-lysosomal mechanisms are probably involved as well.


2020 ◽  
Vol 35 (38) ◽  
pp. 2050315
Author(s):  
R. Razavi ◽  
O. Nouri ◽  
A. Rahmatinejad ◽  
S. Mohammadi

Excitation-energy dependent parity ratios in the level densities of [Formula: see text] isotopes are calculated within a microscopic approach. Introducing a parity equilibration parameter, energy dependence of the transition from where a single parity dominates to a parity equilibrated state is compared among [Formula: see text] isotopes and its relation to the pairing effect is investigated. A correlation between the pair-breaking and the equilibration of parity distributions is observed for the considered isotopes.


1981 ◽  
Vol 1 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M Sameshima ◽  
S A Liebhaber ◽  
D Schlessinger

The turnover rates of 3H-labeled 18S ribosomal ribonucleic acid (RNA), 28S ribosomal RNA, transfer RNA, and total cytoplasmic RNA were very similar in growing WI-38 diploid fibroblasts. The rate of turnover was at least twofold greater when cell growth stopped due to cell confluence, 3H irradiation, or treatment with 20 mM NaN3 or 2 mM NaF. In contrast, the rate of total 3H-protein turnover was the same in growing and nongrowing cells. Both RNA and protein turnovers were accelerated at least twofold in WI-38 cells deprived of serum, and this increase in turnover was inhibited by NH4Cl. These results are consistent with two pathways for RNA turnover, one of them being nonlysosomal and the other being lysosome mediated (NH4Cl sensitive), as has been suggested for protein turnover. Also consistent with the notion of two pathways for RNA turnover were findings with I-cells, which are deficient for many lysosomal enzymes, and in which all RNA turnover was nonlysosomal (NH4Cl resistant).


Sign in / Sign up

Export Citation Format

Share Document