Quantifying Alterations in Cell Migration: Tracking Fluorescently-Tagged Migrating Cells by FACs and Live-Imaging

Author(s):  
Rachael Z. Murray
2018 ◽  
Author(s):  
Inge M. N. Wortel ◽  
Ioana Niculescu ◽  
P. Martijn Kolijn ◽  
Nir Gov ◽  
Rob J. de Boer ◽  
...  

ABSTRACTCell migration is astoundingly diverse. Molecular signatures, cell-cell and cell-matrix interactions, and environmental structures each play their part in shaping cell motion, yielding numerous different cell morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. Given this universal coupling between speed and persistence (UCSP), from a modelling perspective it is important to know whether computational models of cell migration capture this speed-persistence link. Here, we present an in-depth characterisation of an existing Cellular Potts Model (CPM). We first show that this model robustly reproduces the UCSP without having been designed for this task. Instead, we show that this fundamental law of migration emerges spontaneously through a crosstalk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Our model also reveals how cell shape dynamics can further constrain cell motility by limiting both the speed and persistence a cell can reach, and how a rigid environment such as the skin can restrict cell motility even further. Our results further validate the CPM as a model of cell migration, and shed new light on the speed-persistence coupling that has emerged as a fundamental property of migrating cells.SIGNIFICANCEThe universal coupling between speed and persistence (UCSP) is the first general quantitative law describing motility patterns across the versatile spectrum of migrating cells. Here, we show – for the first time – that this migration law emerges spontaneously in an existing, highly popular computational model of cell migration. Studying the UCSP in entirely different model frameworks, not explicitly built with this law in mind, can help uncover how intracellular dynamics, cell shape, and environment interact to produce the diverse motility patterns observed in migrating cells.


2013 ◽  
Vol 202 (5) ◽  
pp. 725-734 ◽  
Author(s):  
Jonathan A. Cooper

Many neurons resemble other cells in developing embryos in migrating long distances before they differentiate. However, despite shared basic machinery, neurons differ from other migrating cells. Most dramatically, migrating neurons have a long and dynamic leading process, and may extend an axon from the rear while they migrate. Neurons must coordinate the extension and branching of their leading processes, cell movement with axon specification and extension, switching between actin and microtubule motors, and attachment and recycling of diverse adhesion proteins. New research is needed to fully understand how migration of such morphologically complicated cells is coordinated over space and time.


2008 ◽  
Vol 19 (11) ◽  
pp. 4930-4941 ◽  
Author(s):  
Chinten J. Lim ◽  
Kristin H. Kain ◽  
Eugene Tkachenko ◽  
Lawrence E. Goldfinger ◽  
Edgar Gutierrez ◽  
...  

cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as α4β1 or α5β1 and an intact actin cytoskeleton. α4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of α4β1 integrin-mediated PKA activation at the leading edge. Accumulation of 3′ phosphorylated phosphoinositides [PtdIns(3,4,5)P3] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P3-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration.


Author(s):  
Patrick Cafferty ◽  
Xiaojun Xie ◽  
Kristen Browne ◽  
Vanessa J. Auld

2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.


2007 ◽  
Vol 178 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Dominique T. Brandt ◽  
Sabrina Marion ◽  
Gareth Griffiths ◽  
Takashi Watanabe ◽  
Kozo Kaibuchi ◽  
...  

The Diaphanous-related formin Dia1 nucleates actin polymerization, thereby regulating cell shape and motility. Mechanisms that control the cellular location of Dia1 to spatially define actin polymerization are largely unknown. In this study, we identify the cytoskeletal scaffold protein IQGAP1 as a Dia1-binding protein that is necessary for its subcellular location. IQGAP1 interacts with Dia1 through a region within the Diaphanous inhibitory domain after the RhoA-mediated release of Dia1 autoinhibition. Both proteins colocalize at the front of migrating cells but also at the actin-rich phagocytic cup in macrophages. We show that IQGAP1 interaction with Dia1 is required for phagocytosis and phagocytic cup formation. Thus, we identify IQGAP1 as a novel component involved in the regulation of phagocytosis by mediating the localization of the actin filament nucleator Dia1.


2013 ◽  
Vol 201 (7) ◽  
pp. 965-965 ◽  
Author(s):  
Ben Short

Migrating cells are restricted by their ability to squeeze their nuclei through pores in the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document