Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

Author(s):  
Eric L. Geist
2020 ◽  
Vol 92 (1) ◽  
pp. 140-150
Author(s):  
Diego Melgar ◽  
Angel Ruiz-Angulo ◽  
Xyoli Pérez-Campos ◽  
Brendan W. Crowell ◽  
Xiaohua Xu ◽  
...  

Abstract The La Crucecita earthquake ruptured on the megathrust, generating strong shaking and a modest but long-lived tsunami. This is a significant earthquake that illuminates important aspects of the behavior of the megathrust as well as the potential related hazards. The rupture is contained within 15–30 km depth, ground motions are elevated, and the energy to moment ratio is high. We argue that it represents a deep megathrust earthquake, the 30 km depth is the down-dip edge of slip. The inversion is well constrained, ruling out any shallow slip. It is the narrow seismogenic width and the configuration of the coastline that allow for deformation to occur offshore. The minor tsunamigenesis can be accounted for by the deep slip patch. There is a significant uplift at the coast above it, which leads to negative maximum tsunami amplitudes. Finally, tide-gauge recordings show that edge-wave modes were excited and produce larger amplitudes and durations in the Gulf of Tehuantepec.


1988 ◽  
Vol 93 (C10) ◽  
pp. 12393 ◽  
Author(s):  
D. A. Huntley
Keyword(s):  

1971 ◽  
Vol 50 (3) ◽  
pp. 431-448 ◽  
Author(s):  
A. D. McEwan

The factors bringing about the irreversible distortion or degeneration of a continuously forced standing internal gravity wave in a linearly stratified fluid are studied experimentally and theoretically. For a rectangular container there is strong evidence that the process is initiated by the unstable growth, from a subliminal level, of free wave modes forming triads in second-order resonant interaction with the original wave. These free modes grow by de-energizing the original wave and may collectively induce kinematical conditions sufficiently severe to create localized regions of density discontinuity within the fluid, leading to turbulence.Although the possible free wave modes are doubly infinite in number, the geometrical constraints greatly reduce the number of possibilities for resonant triads. In many cases this permits critical wave amplitude to be predicted by consideration of one triad only, and the results are in excellent agreement with experiment.It is speculated that a closely similar process explains observations by Malkus (1968), Aldridge & Toomre (1969), and McEwan (1970) in the analogous context of inertial oscillation of contained rotating fluids.


2020 ◽  
Vol 5 (7) ◽  
Author(s):  
Pauline Husseini ◽  
Dheeraj Varma ◽  
Thierry Dauxois ◽  
Sylvain Joubaud ◽  
Philippe Odier ◽  
...  

1998 ◽  
Vol 538 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractPhase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram.


2020 ◽  
Vol 152 (17) ◽  
pp. 174110 ◽  
Author(s):  
Chen Jia ◽  
Ramon Grima

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


Sign in / Sign up

Export Citation Format

Share Document