scholarly journals Green Tramp Shipping Routing and Scheduling: Effects of Market-Based Measures on CO2 Reduction

2019 ◽  
pp. 285-305 ◽  
Author(s):  
Xin Wang ◽  
Inge Norstad ◽  
Kjetil Fagerholt ◽  
Marielle Christiansen
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Said El Noshokaty

Purpose The purpose of this paper is to resolve three problems in ship routing and scheduling systems. Problem 1 is the anticipation of the future cargo transport demand when the shipping models are stochastic based on this demand. Problem 2 is the capacity of these models in processing large number of ships and cargoes within a reasonable time. Problem 3 is the viability of tramp shipping when it comes to real problems. Design/methodology/approach A commodity-trade forecasting system is developed, an information technology platform is designed and new shipping elements are added to the models to resolve tramp problems of en-route ship bunkering, low-tide port calls and hold-cleaning cost caused by carrying incompatible cargoes. Findings More realistic stochastic cargo quantity and freight can now be anticipated, larger number of ships and cargoes are now processed in time and shipping systems are becoming more viable. Practical implications More support goes to ship owners to make better shipping decisions. Originality/value New norms are established in forecasting, upscaling and viability in ship routing and scheduling systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Krystel K. Castillo-Villar ◽  
Rosa G. González-Ramírez ◽  
Pablo Miranda González ◽  
Neale R. Smith

This paper develops a heuristic algorithm for solving a routing and scheduling problem for tramp shipping with discretized time windows. The problem consists of determining the set of cargoes that should be served by each ship, the arrival, departure, and waiting times at each port, while minimizing total costs. The heuristic proposed is based on a variable neighborhood search, considering a number of neighborhood structures to find a solution to the problem. We present computational results, and, for comparison purposes, we consider instances that can be solved directly by CPLEX to test the performance of the proposed heuristic. The heuristics achieves good solution quality with reasonable computational times. Our computational results are encouraging and establish that our heuristic can be utilized to solve large real-size instances.


2013 ◽  
Author(s):  
Charles D. Gorecki ◽  
Edward N. Steadman ◽  
John A. Harju ◽  
James A. Sorensen ◽  
John A. Hamling ◽  
...  

2006 ◽  
Vol 60 (5) ◽  
pp. 655-663
Author(s):  
Shigeaki Obayashi

Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Sign in / Sign up

Export Citation Format

Share Document