Submergence Stress in Rice: Physiological Disorders, Tolerance Mechanisms, and Management

2019 ◽  
pp. 173-189
Author(s):  
Umer Mahmood ◽  
Hafiz Athar Hussain ◽  
Sadam Hussain ◽  
Umair Ashraf ◽  
Abdul Khaliq ◽  
...  
2018 ◽  
Vol 34 (1) ◽  
pp. 51-64
Author(s):  
A. Hemantaranjan ◽  
◽  
C.P. Malik ◽  
A. Nishant Bhanu ◽  
◽  
...  

2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Author(s):  
Noreen Zahra ◽  
Muhammad Bilal Hafeez ◽  
Kanval Shaukat ◽  
Abdul Wahid ◽  
Sadam Hussain ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 144
Author(s):  
William Little ◽  
Caroline Black ◽  
Allie Clinton Smith

With the development of next generation sequencing technologies in recent years, it has been demonstrated that many human infectious processes, including chronic wounds, cystic fibrosis, and otitis media, are associated with a polymicrobial burden. Research has also demonstrated that polymicrobial infections tend to be associated with treatment failure and worse patient prognoses. Despite the importance of the polymicrobial nature of many infection states, the current clinical standard for determining antimicrobial susceptibility in the clinical laboratory is exclusively performed on unimicrobial suspensions. There is a growing body of research demonstrating that microorganisms in a polymicrobial environment can synergize their activities associated with a variety of outcomes, including changes to their antimicrobial susceptibility through both resistance and tolerance mechanisms. This review highlights the current body of work describing polymicrobial synergism, both inter- and intra-kingdom, impacting antimicrobial susceptibility. Given the importance of polymicrobial synergism in the clinical environment, a new system of determining antimicrobial susceptibility from polymicrobial infections may significantly impact patient treatment and outcomes.


2021 ◽  
Vol 22 (15) ◽  
pp. 7905
Author(s):  
Zhongxun Yuan ◽  
Xilu Ni ◽  
Muhammad Arif ◽  
Zhi Dong ◽  
Limiao Zhang ◽  
...  

Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.


2021 ◽  
Vol 22 (13) ◽  
pp. 6989
Author(s):  
Yuya Liang ◽  
Sudip Biswas ◽  
Backki Kim ◽  
Julia Bailey-Serres ◽  
Endang M. Septiningsih

Gene editing by use of clustered regularly interspaced short palindromic repeats (CRISPR) has become a powerful tool for crop improvement. However, a common bottleneck in the application of this approach to grain crops, including rice (Oryza sativa), is efficient vector delivery and calli regeneration, which can be hampered by genotype-dependent requirements for plant regeneration. Here, methods for Agrobacterium-mediated and biolistic transformation and regeneration of indica rice were optimized using CRISPR-Cas9 gene-editing of the submergence tolerance regulator SUBMERGENCE 1A-1 gene of the cultivar Ciherang-Sub1. Callus induction and plantlet regeneration methods were optimized for embryogenic calli derived from immature embryos and mature seed-derived calli. Optimized regeneration (95%) and maximal editing efficiency (100%) were obtained from the immature embryo-derived calli. Phenotyping of T1 seeds derived from the edited T0 plants under submergence stress demonstrated inferior phenotype compared to their controls, which phenotypically validates the disruption of SUB1A-1 function. The methods pave the way for rapid CRISPR-Cas9 gene editing of recalcitrant indica rice cultivars.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1179
Author(s):  
Jonatan Sánchez ◽  
Antonio da Silva ◽  
Pablo Parra ◽  
Óscar R. Polo ◽  
Agustín Martínez Hellín ◽  
...  

Multicore hardware platforms are being incorporated into spacecraft on-board systems to achieve faster and more efficient data processing. However, such systems lead to increased complexity in software development and represent a considerable challenge, especially concerning the runtime verification of fault-tolerance requirements. To address the ever-challenging verification of this kind of requirement, we introduce a LEON4 multicore virtual platform called LeonViP-MC. LeonViP-MC is an evolution of a previous development called Leon2ViP, carried out by the Space Research Group of the University of Alcalá (SRG-UAH), which has been successfully used in the development and testing of the flight software of the instrument control unit (ICU) of the energetic particle detector (EPD) on board the Solar Orbiter. This paper describes the LeonViP-MC architectural design decisions oriented towards fault-injection campaigns to verify software fault-tolerance mechanisms. To validate the simulator, we developed an ARINC653 communications channel that incorporates fault-tolerance mechanisms and is currently being used to develop a hypervisor level for the GR740 platform.


Sign in / Sign up

Export Citation Format

Share Document