scholarly journals Transcriptomic Analysis of the Photosynthetic, Respiration, and Aerenchyma Adaptation Strategies in Bermudagrass (Cynodon dactylon) under Different Submergence Stress

2021 ◽  
Vol 22 (15) ◽  
pp. 7905
Author(s):  
Zhongxun Yuan ◽  
Xilu Ni ◽  
Muhammad Arif ◽  
Zhi Dong ◽  
Limiao Zhang ◽  
...  

Submergence impedes photosynthesis and respiration but facilitates aerenchyma formation in bermudagrass. Still, the regulatory genes underlying these physiological responses are unclear in the literature. To identify differentially expressed genes (DEGs) related to these physiological mechanisms, we studied the expression of DEGs in aboveground and underground tissues of bermudagrass after a 7 d treatment under control (CK), shallow submergence (SS), and deep submergence (DS). Results show that compared with CK, 12276 and 12559 DEGs were identified under SS and DS, respectively. Among them, the DEGs closely related to the metabolism of chlorophyll biosynthesis, light-harvesting, protein complex, and carbon fixation were down-regulated in SS and DS. Meanwhile, a large number of DEGs involved in starch and sucrose hydrolase activities, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation were down-regulated in aboveground tissues of bermudagrass in SS and DS. Whereas in underground tissues of bermudagrass these DEGs were all up-regulated under SS, only beta-fructofuranosidase and α-amylase related genes were up-regulated under DS. In addition, we found that DEGs associated with ethylene signaling, Ca2+-ROS signaling, and cell wall modification were also up-regulated during aerenchyma formation in underground tissues of bermudagrass under SS and DS. These results provide the basis for further exploration of the regulatory and functional genes related to the adaptability of bermudagrass to submergence.

1997 ◽  
Vol 45 (2) ◽  
pp. 343 ◽  
Author(s):  
Grant Westphalen ◽  
Anthony C. Cheshire

A preliminary investigation of the production and photosynthetic efficiency of a temperate, sub-tidal, turf algal community using in situ measurements of photosynthesis and respiration is reported. Results indicated that temperate turfs have high biomass specific productivity, but are less productive on an areal basis than either the surrounding macro-algal community or their tropical counterparts. Net 24 h production ranges between 12 and 78 mmol O2 m-2 d-1 (corresponding to a carbon fixation rate of 0.1–0.9 g C m-2 d-1). Inefficient use of the available substrata, due to the early successional nature of these communities, is considered to be the cause of this low productivity. A quantum efficiency of 0.034 µmol O2 µmol photons-1 and a sub-saturating light itensity of 134–210 µmol photons m-2 s-1 indicate that photosynthetic saturation was easily achieved and suggests that self-shading in the turf community was not significant.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhanru Shao ◽  
Pengyan Zhang ◽  
Chang Lu ◽  
Shaoxuan Li ◽  
Zhihang Chen ◽  
...  

Abstract Background Alginate is an important cell wall component and mannitol is a soluble storage carbon substance in the brown seaweed Saccharina japonica. Their contents vary with kelp developmental periods and harvesting time. Alginate and mannitol regulatory networks and molecular mechanisms are largely unknown. Results With WGCNA and trend analysis of 20,940 known genes and 4264 new genes produced from transcriptome sequencing of 30 kelp samples from different stages and tissues, we deduced that ribosomal proteins, light harvesting complex proteins and “imm upregulated 3” gene family are closely associated with the meristematic growth and kelp maturity. Moreover, 134 and 6 genes directly involved in the alginate and mannitol metabolism were identified, respectively. Mannose-6-phosphate isomerase (MPI2), phosphomannomutase (PMM1), GDP-mannose 6-dehydrogenase (GMD3) and mannuronate C5-epimerase (MC5E70 and MC5E122) are closely related with the high content of alginate in the distal blade. Mannitol accumulation in the basal blade might be ascribed to high expression of mannitol-1-phosphate dehydrogenase (M1PDH1) and mannitol-1-phosphatase (M1Pase) (in biosynthesis direction) and low expression of mannitol-2-dehydrogenase (M2DH) and Fructokinase (FK) (in degradation direction). Oxidative phosphorylation and photosynthesis provide ATP and NADH for mannitol metabolism whereas glycosylated cycle and tricarboxylic acid (TCA) cycle produce GTP for alginate biosynthesis. RNA/protein synthesis and transportation might affect alginate complex polymerization and secretion processes. Cryptochrome (CRY-DASH), xanthophyll cycle, photosynthesis and carbon fixation influence the production of intermediate metabolite of fructose-6-phosphate, contributing to high content of mannitol in the basal blade. Conclusions The network of co-responsive DNA synthesis, repair and proteolysis are presumed to be involved in alginate polymerization and secretion, while upstream light-responsive reactions are important for mannitol accumulation in meristem of kelp. Our transcriptome analysis provides new insights into the transcriptional regulatory networks underlying the biosynthesis of alginate and mannitol during S. japonica developments.


2020 ◽  
Author(s):  
Hao Sun ◽  
Jie Yu ◽  
Fan Zhang ◽  
Junmei Kang ◽  
Mingna Li ◽  
...  

Abstract Background: To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves.Results: Based on fold-change thresholds of >1.20 or <0.83 (p<0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. Conclusion: Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


Author(s):  
Xiaohong Wang ◽  
Qianqian Ma ◽  
Ran Wang ◽  
Pan Wang ◽  
Yimin Liu ◽  
...  

In Arabidopsis, submergence induces underwater hypocotyl elongation through ethylene signaling, with activation of transcription factor PIF3 and cortical microtubule reorganization mediated by microtubule-destabilizing protein 60.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Sun ◽  
Jie Yu ◽  
Fan Zhang ◽  
Junmei Kang ◽  
Mingna Li ◽  
...  

Abstract Background To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves. Results Based on fold-change thresholds of > 1.20 or < 0.83 (p < 0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. Conclusion Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.


2020 ◽  
Author(s):  
Geng Li ◽  
Bin Zheng ◽  
Wei Zhao ◽  
Ting-Hu Ren ◽  
Xing-Hui Zhang ◽  
...  

Abstract Protein lysine acetylation (Kac) is an important post-translational modification present in both animal and plant cells. Here, we reported the results from a proteomic investigation of Kac in soybean leaves. We totally identified 3148 acetylation sites in 1538 proteins from three biological replicates, among 59 lysine acetylation sites in core histones, represents the largest acetylome dataset in plants to date. Gene Ontology (GO) functional analysis illustrated that most of the acetylated proteins involved in metabolic processes (include carboxylic acid metabolic process, oxoacid metabolic process, nucleoside metabolic process, nucleoside phosphate metabolic process, and ribose phosphate metabolic process). KEGG pathway enrichment showed Kac plays an important role in Photosynthesis, Carbon fixation in photosynthetic organisms and Citrate cycle (TCA cycle). Meanwhile we also find a total of 17 conserved Kac motifs. All together, our study not only provides the first global and most extensive lysine acetylation analysis in soybean leaves, but also suggest that lysine acetylation is play an important and unique role in plants.


2019 ◽  
Vol 21 (1) ◽  
pp. 118 ◽  
Author(s):  
Yi-Ling Liu ◽  
Zhi-Jun Shen ◽  
Martin Simon ◽  
Huan Li ◽  
Dong-Na Ma ◽  
...  

As a dominant mangrove species, Kandelia obovata is distributed in an intertidal marsh with an active H2S release. Whether H2S participates in the salt tolerance of mangrove plants is still ambiguous, although increasing evidence has demonstrated that H2S functions in plant responses to multiple abiotic stresses. In this study, NaHS was used as an H2S donor to investigate the regulatory mechanism of H2S on the salt tolerance of K. obovata seedlings by using a combined physiological and proteomic analysis. The results showed that the reduction in photosynthesis (Pn) caused by 400 mM of NaCl was recovered by the addition of NaHS (200 μM). Furthermore, the application of H2S enhanced the quantum efficiency of photosystem II (PSII) and the membrane lipid stability, implying that H2S is beneficial to the survival of K. obovata seedlings under high salinity. We further identified 37 differentially expressed proteins by proteomic approaches under salinity and NaHS treatments. Among them, the proteins that are related to photosynthesis, primary metabolism, stress response and hormone biosynthesis were primarily enriched. The physiological and proteomic results highlighted that exogenous H2S up-regulated photosynthesis and energy metabolism to help K. obovata to cope with high salinity. Specifically, H2S increased photosynthetic electron transfer, chlorophyll biosynthesis and carbon fixation in K. obovata leaves under salt stress. Furthermore, the abundances of other proteins related to the metabolic pathway, such as antioxidation (ascorbic acid peroxidase (APX), copper/zinc superoxide dismutase (CSD2), and pancreatic and duodenal homeobox 1 (PDX1)), protein synthesis (heat-shock protein (HSP), chaperonin family protein (Cpn) 20), nitrogen metabolism (glutamine synthetase 1 and 2 (GS2), GS1:1), glycolysis (phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI)), and the ascorbate–glutathione (AsA–GSH) cycle were increased by H2S under high salinity. These findings provide new insights into the roles of H2S in the adaptations of the K. obovata mangrove plant to high salinity environments.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vittoria Roncalli ◽  
Matthew C. Cieslak ◽  
Ann M. Castelfranco ◽  
Russell R. Hopcroft ◽  
Daniel K. Hartline ◽  
...  

Abstract Background Diapause is a seasonal dormancy that allows organisms to survive unfavorable conditions and optimizes the timing of reproduction and growth. Emergence from diapause reverses the state of arrested development and metabolic suppression returning the organism to an active state. The physiological mechanisms that regulate the transition from diapause to post-diapause are still unknown. In this study, this transition has been characterized for the sub-arctic calanoid copepod Neocalanus flemingeri, a key crustacean zooplankter that supports the highly productive North Pacific fisheries. Transcriptional profiling of females, determined over a two-week time series starting with diapausing females collected from > 400 m depth, characterized the molecular mechanisms that regulate the post-diapause trajectory. Results A complex set of transitions in relative gene expression defined the transcriptomic changes from diapause to post-diapause. Despite low temperatures (5–6 °C), the switch from a “diapause” to a “post-diapause” transcriptional profile occurred within 12 h of the termination stimulus. Transcriptional changes signaling the end of diapause were activated within one-hour post collection and included the up-regulation of genes involved in the 20E cascade pathway, the TCA cycle and RNA metabolism in combination with the down-regulation of genes associated with chromatin silencing. By 12 h, females exhibited a post-diapause phenotype characterized by the up-regulation of genes involved in cell division, cell differentiation and multiple developmental processes. By seven days post collection, the reproductive program was fully activated as indicated by up-regulation of genes involved in oogenesis and energy metabolism, processes that were enriched among the differentially expressed genes. Conclusions The analysis revealed a finely structured, precisely orchestrated sequence of transcriptional changes that led to rapid changes in the activation of biological processes paving the way to the successful completion of the reproductive program. Our findings lead to new hypotheses related to potentially universal mechanisms that terminate diapause before an organism can resume its developmental program.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Feng Yang ◽  
Das Debatosh ◽  
Tao Song ◽  
Jian-hua Zhang

Abstract Background Carotenoid biosynthesis is essential for the generation of photosynthetic pigments, phytohormone production, and flower color development. The light harvesting like 3 (LIL3) protein, which belongs to the light-harvesting complex protein family in photosystems, interacts with geranylgeranyl reductase (GGR) and protochlorophyllide oxidoreductase (POR) both of which are known to regulate terpenoid and chlorophyll biosynthesis, respectively, in both rice and Arabidopsis. Results In our study, a CRISPR-Cas9 generated 4-bp deletion mutant oslil3 showed aberrant chloroplast development, growth defects, low fertility rates and reduced pigment contents. A comparative transcriptomic analysis of oslil3 suggested that differentially expressed genes (DEGs) involved in photosynthesis, cell wall modification, primary and secondary metabolism are differentially regulated in the mutant. Protein-protein interaction assays indicated that LIL3 interacts with phytoene synthase (PSY) and in addition the gene expression of PSY genes are regulated by LIL3. Subcellular localization of LIL3 and PSY suggested that both are thylakoid membrane anchored proteins in the chloroplast. We suggest that LIL3 directly interacts with PSY to regulate carotenoid biosynthesis. Conclusion This study reveals a new role of LIL3 in regulating pigment biosynthesis through interaction with the rate limiting enzyme PSY in carotenoid biosynthesis in rice presenting it as a putative target for genetic manipulation of pigment biosynthesis pathways in crop plants.


Sign in / Sign up

Export Citation Format

Share Document