scholarly journals It Started with Templates: The Future of Profiling in Side-Channel Analysis

Author(s):  
Lejla Batina ◽  
Milena Djukanovic ◽  
Annelie Heuser ◽  
Stjepan Picek

AbstractSide-channel attacks (SCAs) are powerful attacks based on the information obtained from the implementation of cryptographic devices. Profiling side-channel attacks has received a lot of attention in recent years due to the fact that this type of attack defines the worst-case security assumptions. The SCA community realized that the same approach is actually used in other domains in the form of supervised machine learning. Consequently, some researchers started experimenting with different machine learning techniques and evaluating their effectiveness in the SCA context. More recently, we are witnessing an increase in the use of deep learning techniques in the SCA community with strong first results in side-channel analyses, even in the presence of countermeasures. In this chapter, we consider the evolution of profiling attacks, and subsequently we discuss the impacts they have made in the data preprocessing, feature engineering, and classification phases. We also speculate on the future directions and the best-case consequences for the security of small devices.

2020 ◽  
Vol 4 (4) ◽  
pp. 314-328
Author(s):  
Léo Weissbart ◽  
Łukasz Chmielewski ◽  
Stjepan Picek ◽  
Lejla Batina

AbstractProfiling attacks, especially those based on machine learning, proved to be very successful techniques in recent years when considering the side-channel analysis of symmetric-key crypto implementations. At the same time, the results for implementations of asymmetric-key cryptosystems are very sparse. This paper considers several machine learning techniques to mount side-channel attacks on two implementations of scalar multiplication on the elliptic curve Curve25519. The first implementation follows the baseline implementation with complete formulae as used for EdDSA in WolfSSl, where we exploit power consumption as a side-channel. The second implementation features several countermeasures, and in this case, we analyze electromagnetic emanations to find side-channel leakage. Most techniques considered in this work result in potent attacks, and especially the method of choice appears to be convolutional neural networks (CNNs), which can break the first implementation with only a single measurement in the attack phase. The same convolutional neural network demonstrated excellent performance for attacking AES cipher implementations. Our results show that some common grounds can be established when using deep learning for profiling attacks on very different cryptographic algorithms and their corresponding implementations.


Author(s):  
Stjepan Picek ◽  
Annelie Heuser ◽  
Alan Jovic ◽  
Shivam Bhasin ◽  
Francesco Regazzoni

We concentrate on machine learning techniques used for profiled sidechannel analysis in the presence of imbalanced data. Such scenarios are realistic and often occurring, for instance in the Hamming weight or Hamming distance leakage models. In order to deal with the imbalanced data, we use various balancing techniques and we show that most of them help in mounting successful attacks when the data is highly imbalanced. Especially, the results with the SMOTE technique are encouraging, since we observe some scenarios where it reduces the number of necessary measurements more than 8 times. Next, we provide extensive results on comparison of machine learning and side-channel metrics, where we show that machine learning metrics (and especially accuracy as the most often used one) can be extremely deceptive. This finding opens a need to revisit the previous works and their results in order to properly assess the performance of machine learning in side-channel analysis.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Author(s):  
Augusto Cerqua ◽  
Roberta Di Stefano ◽  
Marco Letta ◽  
Sara Miccoli

AbstractEstimates of the real death toll of the COVID-19 pandemic have proven to be problematic in many countries, Italy being no exception. Mortality estimates at the local level are even more uncertain as they require stringent conditions, such as granularity and accuracy of the data at hand, which are rarely met. The “official” approach adopted by public institutions to estimate the “excess mortality” during the pandemic draws on a comparison between observed all-cause mortality data for 2020 and averages of mortality figures in the past years for the same period. In this paper, we apply the recently developed machine learning control method to build a more realistic counterfactual scenario of mortality in the absence of COVID-19. We demonstrate that supervised machine learning techniques outperform the official method by substantially improving the prediction accuracy of the local mortality in “ordinary” years, especially in small- and medium-sized municipalities. We then apply the best-performing algorithms to derive estimates of local excess mortality for the period between February and September 2020. Such estimates allow us to provide insights about the demographic evolution of the first wave of the pandemic throughout the country. To help improve diagnostic and monitoring efforts, our dataset is freely available to the research community.


Author(s):  
Vara Vundavalli ◽  
Farhat Barsha ◽  
Mohammad Masum ◽  
Hossain Shahriar ◽  
Hisham Haddad

Author(s):  
Linwei Hu ◽  
Jie Chen ◽  
Joel Vaughan ◽  
Soroush Aramideh ◽  
Hanyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document