Design of Energy-Aware PRoPHET and Spray-and-Wait Routing Protocols for Opportunistic Networks

Author(s):  
Sibusiso Shabalala ◽  
Zelalem Shibeshi ◽  
Khuram Khalid
Author(s):  
Jasvir Singh ◽  
Raman Maini

Background: The opportunistic mobile networks (OMNs) are a type of mobile adhoc networks (MANETs) with delay-tolerant network (DTN) features, where the sender to receiver connectivity never exists most of the time, due to dynamic nature of the nodes and the network partition. The real use of OMNs is to provide connectivity in challenged environments. Methods: The paper presents the detailed analysis of three routing protocols, namely Epidemic, PROPHET and Spray and Wait, against variable size of the messages and the time to live (TTL) in the networks. The key contribution of the paper is to explore routing protocols with mobility models for the dissemination of data to the destination. Routing uses the store-carryforward mechanism for message transfer and network has to keep compromise between message delivery ratio and delivery delay. Results: The results are generated from the experiments with Opportunistic Network Environment (ONE) simulator. The performance is evaluated based on three metrics, the delivery ratio, overhead ratio and the average latency. The results show that the minimum message size (256 KB) offers better performance in the delivery than the larger message size (1 MB). It has also been observed that with the epidemic routing, since there are more message replicas, which in turn increase the cost of delivery, so with a smaller message, the protocol can reduce the overhead ratio with a high proportion. Conclusion: The average latency observed increases with the increase of the TTL of the message in three protocols with variation of the message size from 256KB to 1 MB.


2013 ◽  
Vol 24 (2) ◽  
pp. 230-242
Author(s):  
Liang-Yin CHEN ◽  
Zhen-Lei LIU ◽  
Xun ZOU ◽  
Zheng-Kun XU ◽  
Zhen-Qian GUO ◽  
...  

2010 ◽  
Vol 30 (3) ◽  
pp. 723-728 ◽  
Author(s):  
Zhi REN ◽  
Yong HUANG ◽  
Qian-bin CHEN

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aparna Ashok Kamble ◽  
Balaji Madhavrao Patil

Abstract Wireless networks involve spatially extended independent sensor nodes, and it is associated with each other’s to preserve and identify physical and environmental conditions of the particular application. The sensor nodes batteries are equipped with restricted energy for working with an energy source. Consequently, efficient energy consumption is themain important challenge in wireless networks, and it is outfitted witharestricted power storage capacity battery. Therefore, routing protocol with energy efficiency is essential in wireless sensor network (WSN) to offer data transmission and connectivity with less energy consumption. As a result, the routing scheme is the main factor for decreasing energy consumption and the network's lifetime. The energy-aware routing model is mainly devised for WSN with high network performance when transmitting data to a sink node. Hence, in this paper, the effectiveness of energy-aware routing protocols in mobile sink-based WSNs is analyzed and justified. Some energy-aware routing systems in mobile sink-based WSN techniques, such as optimizing low-energy adaptive clustering hierarchy (LEACH) clustering approach, hybrid model using fuzzy logic, and mobile sink. The fuzzy TOPSIS-based cluster head selection (CHS) technique, mobile sink-based energy-efficient CHS model, and hybrid Harris Hawk-Salp Swarm (HH-SS) optimization approach are taken for the simulation process. Additionally, the analytical study is executed using various conditions, like simulation, cluster size, nodes, mobile sink speed, and rounds. Moreover, the performance of existing methods is evaluated using various parameters, namely alive node, residual energy, delay, and packet delivery ratio (PDR).


Author(s):  
Aliyu M. Abali ◽  
Norafida Bte Ithnin ◽  
Tekenate Amah Ebibio ◽  
Muhammad Dawood ◽  
Wadzani A. Gadzama

Sign in / Sign up

Export Citation Format

Share Document